Skip to main content
Log in

Mitigation of Two Insecticides by Wetland Plants: Feasibility Study for the Treatment of Agricultural Runoff in Suriname (South America)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In agricultural areas, pesticides can enter receiving waterbodies by means of agricultural runoff and pollute these systems. Constructed wetlands are capable of removing several pollutants including pesticides. Unfortunately, few studies are from South America, and therefore, information is urgently needed on pesticide mitigation in agricultural runoff by native plants. To this aim, an experimental setup of polypropylene tubs was used, which were planted with two types of native plants (Nymphaea amazonum and Eleocharis mutata). Mesocosms were exposed to low (10 μg/l) and high (30 μg/l) target concentrations of lambda-cyhalothrin, while for imidacloprid, a low (60 μg/l), high (180 μg/l), and an extra high (1,000 μg/l) dose, were applied using batch experiments of 2 weeks each. Removal efficiencies for lambda-cyhalothrin from the water phase showed 100 % removal at 72 h for both low and high target concentrations for N. amazonum mesocosms, while for E. mutata mesocosms, a 100 % removal was observed at 48 h for mesocosms exposed to low target concentrations and for high target concentrations at 72 h. For imidacloprid, a 100 % removal was observed for E. mutata and 86 % for N. amazonum mesocosms exposed to low target concentrations (60 μg/l) at 216 h. For the highest dose (1,000 μg/l), the removal efficiency was on average 72 % at 216 h for both types of mesocosms. Statistical two-way ANOVA analysis (α = 0.05) showed that the removal of lambda-cyhalothrin was independent of the dose applied and the plant type, while for imidacloprid, removal was dependent on the dose applied and independent of the plant type. After the experimental period, analyses of the plants and sediment showed that 48.5 % of the applied amount of lambda-cyhalothrin was detected in the sediment and 0.4 % in plant material (shoots and leaves), while the amount in roots was below the limit of detection for N. amazonum mesocosms. For E. mutata mesocosms, 44.6 % of lambda-cyhalothrin was detected in sediment and 0.5 % in roots. For N. amazonum mesocosms, 78.9 % of the applied amount of imidacloprid was retained in plants (plant material and roots) and 17.31 % in sediment, while for E. mutata mesocosms only 0.5 % of imidacloprid was detected in plant material and roots. In this experiment, the DT50 of lambda-cyhalothrin in the water phase of both types of mesocosms was on average 1 day, while for imidacloprid, this was calculated to be around 1–10 days. The results obtained provide necessary information for the construction of a field scale wetland capable of efficient removal of pesticides in agricultural runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alsayeda, H., Pascal-Lorber, S., Nallanthigal, C., Debrauwer, L., & Laurent, F. (2008). Transfer of the insecticide [14C] imidacloprid from soil to tomato plants. Environmental Chemistry Letters, 6, 229–234.

    Article  CAS  Google Scholar 

  • Baskaran, S., Kookana, R. S., & Naidu, R. (1999). Degradation of bifenthrin, chlorpyrifos and imidacloprid in soil and bedding materials at termiticidal rates. Pesticide Science, 55, 1222–1228.

    CAS  Google Scholar 

  • Bennett, E. R., Moore, M. T., Cooper, C. M., & Smith, S., Jr. (2000). Method for the simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin in sediment and aquatic plants. Bulletin of Environmental Contamination and Toxicology, 64, 825–833.

    Article  CAS  Google Scholar 

  • Bennett, E. R., Moore, M. T., Cooper, C. M., Smith, S., Jr., Shields, F. D., Jr., Drouillard, K. G., et al. (2005). Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environmental Toxicology and Chemistry, 24(9), 2121–2127. doi:10.1897/04-357R.1.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Farris, J. L., Moore, M. T., Smith, S., Jr., & Cooper, C. M. (2005). Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. Environmental Toxicology, 20(5), 487–498.

    Article  CAS  Google Scholar 

  • Bouldin, J. L., Farris, J. L., Moore, M. T., Smith, S., Jr., & Cooper, C. M. (2006). Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere, 65, 1049–1057.

    Article  CAS  Google Scholar 

  • Braskerud, B. C., & Haarstad, K. (2003). Screening the retention of thirteen pesticides in a small constructed wetland. Water Science and Technology, 48, 267–274.

    CAS  Google Scholar 

  • Budd, R., O'Geen, A., Goh, K. S., Bondarenko, S., & Gan, J. (2009). Efficacy of constructed wetlands in pesticide removal from tailwaters in the central valley, California. Environmental Science and Technology, 43, 2925–2930.

    Article  CAS  Google Scholar 

  • Budd, R., O'geen, A., Goph, K. S., Bondarenko, S., & Gan, J. (2011). Removal mechanisms and fate of insecticides in constructed wetlands. Chemosphere, 83, 1581–1587.

    Article  CAS  Google Scholar 

  • California Department of Pesticide Regulation 2006. Environmental fate of imidacloprid. http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/Imidclprdfate2.pdf. Accessed 5 Oct 2012.

  • Canadian Council of Ministers of the Environment (2007). Canadian water quality guidelines: imidacloprid scientific supporting document. Winnipeg, Man.: Canadian Council of Ministers of the Environment. ISBN 978-1-896997-71-1. http://www.ccme.ca/assets/pdf/imidacloprid_ssd_1388.pdf. Accessed 5 Oct 2012.

  • Chapman, R. A., Tu, C. M., Harris, C. R., & Cole, C. (1981). Persistence of five pyrethroid insecticides in sterile and natural, mineral and organic soil. Bulletin of Environmental Contamination and Toxicology, 26, 513–519.

    Article  CAS  Google Scholar 

  • Crowley, D. E., Alvey, S., & Gilbert, E. S. (1997). Rhizosphere ecology of xenobiotic-degrading microorganisms. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), Phytoremediation of soil and water contaminants (pp. 20–36). Washington DC: American Chemical Society.

  • Elsaesser, D., Buseth-Blankenberg, A., Geist, A., Maehlum, T., & Schulz, R. (2011). Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: application of the toxic units approach. Ecological Engineering, 37, 955–962.

    Article  Google Scholar 

  • Fernández-Bayo, J. D., Nogales, R., & Romero, E. (2007). Improved retention of imidacloprid (Confidor®) in soils by adding vermicompost from spent grape marc. Science of the Total Environment, 378, 95–100.

    Article  Google Scholar 

  • Fogarty, A., & Tuovinen, O. (1991). Microbiological degradation of pesticides in yard waste composting. Microbiological reviews, 55(2), 225–233.

    CAS  Google Scholar 

  • Footprint IUPAC-PPBD database (2012). http://sitem.herts.ac.uk/aeru/footprint/en/index.htm. Accessed 24 Oct 2012.

  • Gregoire, C., Elsaesser, D., Huguenot, D., Lange, J., Lebeau, T., Merli, A., et al. (2009). Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environmental Chemistry Letters, 7, 205–231.

    Article  CAS  Google Scholar 

  • Hand, L. H., Kuet, S. F., Lane, M. C. G., Maund, S. J., Warinton, J. S., & Hill, I. R. (2001). Influences of aquatic plants on the fate of the pyrethroid insecticide lambda-cyhalothrin in aquatic environments. Environmental Toxicology and Chemistry, 20, 1740–1745.

    CAS  Google Scholar 

  • Holvoet, K., Seuntjens, P., & Vanrolleghem, P. A. (2007). Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecological Modelling, 209, 53–64.

    Article  CAS  Google Scholar 

  • Jergentz, S., Mugni, H., Bonetto, C., & Schulz, R. (2005). Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere, 61, 817–826.

    Article  CAS  Google Scholar 

  • Kanrar, B., Ghosh, T., Pramanik, S. K., Dutta, S., Bhattacharyya, A., & Dhuri, A. V. (2006). Degradation dynamics and persistence of imidacloprid in a rice ecosystem under West Bengal climatic conditions. Bulletin of Environmental Contamination and Toxicology, 77(5), 631–637. doi:10.1007/s00128-006-1109-5. ISBN 0-444-41873-3.

    Article  CAS  Google Scholar 

  • Khan, S. U. (1980). Pesticides in the soil environment. Fundamental aspects of pollution control and environmental science 5 (p. 240). Amsterdam: Elsevier. ISBN 0-444-41873-3.

    Google Scholar 

  • Lee, S., Gan, J., Kim, J., & Kabashima, J. N. (2004). Phase distribution of synthetic pyrethroid insecticides in aqueous and sediment phases. Environmental Toxicology Chemistry, 23, 1–6.

    Article  CAS  Google Scholar 

  • Luo, J., Ma, M., Liu, C., Zha, J., & Wang, Z. (2009). Impacts of particulate organic carbon and dissolved organic carbon on removal of polycyclic aromatic hydrocarbons, organochlorine pesticides, and nonylphenols in a wetland. Journal of Soils and Sediments, 9, 180–187.

    Article  CAS  Google Scholar 

  • Matamoros, V., Puigagut, J., García, J., & Bayona, J. M. (2007). Behavior of selected priority organic pollutants in horizontal subsurface flow constructed wetlands: a preliminary screening. Chemosphere, 69, 1374–1380.

    Article  CAS  Google Scholar 

  • Mc Kinlay, R. G., & Kasperek, K. (1999). Observations on decontamination of herbicide-polluted water by marsh plant systems. Water Resources, 33(2), 505–511.

    CAS  Google Scholar 

  • Moore, M. T., Bennett, E. R., Cooper, C. M., Smith, S., Jr., Farris, J. L., Drouillard, K. G., et al. (2006). Influence of vegetation in mitigation of methyl parathion runoff. Environmental Pollution, 142, 288–294.

    Article  CAS  Google Scholar 

  • Moore, M. T., Bennett, E. R., Cooper, C. M., Smith, S., Jr., Shields, F. D., Jr., Milam, C. D., et al. (2001). Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agriculture, Ecosystems & Environment, 87, 309–314. doi:10.1016/S0167-8809(01)00148-7.

    Article  CAS  Google Scholar 

  • Moore, M. T., Denton, D. L., Cooper, C. M., Wrysinski, J., Miller, J. L., Reece, K., et al. (2008). Mitigation assessment of vegetated drainage ditches for collecting irrigation runoff in California. Journal of Environmental Quality, 37, 486–493. doi:10.2134/jeq2007.0172.

    Article  CAS  Google Scholar 

  • Moore, M. T., Denton, D., Cooper, C. M., Wrysinski, J., & Miller, J. F. (2011). Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California, USA. Environmental Toxicology and Chemistry, 30(5), 1044–1049.

    Article  CAS  Google Scholar 

  • Moore, M. T., Kröger, R., Cooper, C. M., & Smith, S., Jr. (2009). Ability of four emergent macrophytes to remediate permethrin in mesocosm experiments. Archives of Environmental Contamination Toxicology, 57, 282–288.

    Article  CAS  Google Scholar 

  • Moore, M. T., Rodgers, J. H., Cooper, C. M., & Smith, S., Jr. (2000). Constructed wetlands for mitigation of atrazine-associated agricultural runoff. Environmental Pollution, 110, 393–399.

    Article  CAS  Google Scholar 

  • National Profile Suriname (2006). UNITAR Project National Profile Preparation, Priority Setting and Information Exchange for Sound Chemicals Management, MOA 2004G22 Toxicology Focal Point, Ministry of Public Health.

  • Phong, T. K., Nhung, D. T., Motobayashi, T., Thuyet, D. Q., & Watanabe, H. (2009). Fate and transport of nursery-box applied tricyclazole and imidacloprid in paddy fiels. Water Air Soil Pollution, 202, 3–12.

    Article  CAS  Google Scholar 

  • Poissant, L., Beauvais, C., Lafrance, P., & Deblois, C. (2008). Pesticides in fluvial wetlands catchments under intensive agricultural activities. Science of the Total Environment, 404, 182–195.

    Article  CAS  Google Scholar 

  • Rodgers, J. H., & Dunn, A. (1992). Developing design guidelines for constructed wetlands to remove pesticides from agricultural runoff. Environmental engineering, 1, 83–95.

    Google Scholar 

  • Romeh, A. A. (2010). Phytoremediation of water and soil contaminated with imidacloprid pesticide by Plantago major, L. International Journal of phytoremediation, 12(2), 188–199. doi:10.1080/15226510903213936.

    Article  CAS  Google Scholar 

  • Rose, M. T., Sanchez-Bayo, F., Crossan, A. N., & Kennedy, I. R. (2006). Pesticide removal from cotton farm tailwater by a pilot-scale ponded wetland. Chemosphere, 63, 1849–1858.

    Article  CAS  Google Scholar 

  • Schulz, R., Hahn, C., Bennett, E. R., Dabrowski, J. M., Thiere, G., & Peall, S. K. C. (2003). Fate and effects of azinphos-methyl in a flow-through wetland in South Africa. Environment Science and Technology, 37, 2139–2144.

    Article  CAS  Google Scholar 

  • Schulz, R., Hauschild, M., Ebeling, M., Nanko-Drees, J., Wogram, J., & Liess, M. (1998). A qualitative field method for monitoring pesticides in the edge-of-field runoff. Chemosphere, 36, 3071–3082.

    Article  CAS  Google Scholar 

  • Spanoghe, P., Claeys, J., Pinoy, L., & Steurbaut, W. (2005). Rainfastness and adsorption of herbicides on hard surfaces. Pesticide Management Science, 61, 793–798.

    Article  CAS  Google Scholar 

  • Spongberg, A., & Martin-Hayden, J. M. (1997). Pesticide stratification in an engineered wetland delta. Environmental Science and Technology, 31, 3161–3165.

    Article  CAS  Google Scholar 

  • Starner, K., & Goh, K. S. (2012). Detections of the neonicotinoid insecticide Imidacloprid in surface waters of three agricultural regions of California, USA, 2010-2011. Bulletin environmental contamination toxicology, 88, 316–321. doi:10.1007/s00128-011-0515-5.

    Article  CAS  Google Scholar 

  • Stehle, S., Elsaesser, D., Gregoire, C., Imfeld, G., Niehaus, E., Passeport, E., et al. (2011). Pesticide risk mitigation by vegetated treatment systems: a meta-analysis. Journal of Environmental Quality, 40(4), 1068–1080.

    Article  CAS  Google Scholar 

  • Sur, R., & Stork, A. (2003). Uptake, translocation and metabolism of imidacloprid in plants. Insectology, 56(1), 35–40. ISSN 1721-8861.

    Google Scholar 

  • US EPA (2008). “Environmental Fate and Effects Division Problem Formulation for the Registration Review of Imidacloprid”. Retrieved April 26, 2013.

  • Van Eerd, L., Hoagland, R. E., Zablotowicz, R. M., & Hall, C. J. (2003). Pesticide metabolism in plants and microorganisms. Weed Science, 51, 472–495.

    Article  Google Scholar 

  • Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 48–65.

    Article  CAS  Google Scholar 

  • Weaver, M. A., Zablotowicz, R. M., & Locke, M. A. (2004). Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland. Chemosphere, 57, 853–862.

    Article  CAS  Google Scholar 

  • Wilson, P. C., Whitwell, T., & Klaine, S. J. (2000). Metalaxyl and simazine toxicity to and uptake by Typha latifolia. Archives of Environmental Contamination and Toxicology, 39(3), 282–288. doi:10.1007/s002440010106.

    Article  CAS  Google Scholar 

  • WRP Technical Note WQ-SW-3. 1, (1994). Design of Constructed Wetlands Systems for Nonpoint Source Pollution.

  • Yuan, J. S., Tranel, P. J., & Stewart, C. N., Jr. (2007). Non-target-site herbicide resistance: a family business. Trends in Plant Science, 12(1), 6–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financed by the VLIR-AdeKUS-IUC project no. 4-5. The author wishes to thank Madhvi Sital for the experiments conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley Mahabali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahabali, S., Spanoghe, P. Mitigation of Two Insecticides by Wetland Plants: Feasibility Study for the Treatment of Agricultural Runoff in Suriname (South America). Water Air Soil Pollut 225, 1771 (2014). https://doi.org/10.1007/s11270-013-1771-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1771-2

Keywords

Navigation