Skip to main content

Advertisement

Log in

Ability of Four Emergent Macrophytes to Remediate Permethrin in Mesocosm Experiments

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Increased focus is being placed on the ability of native vegetation to mitigate potential harmful effects of agricultural runoff, especially pyrethroid insecticides. Replicate 379 L Rubbermaid tubs (1.25 m [l] × 0.6 m [w] × 0.8 m [h]) were planted with individual species of cutgrass (Leersia oryzoides), cattails (Typha latifolia), bur-reed (Sparganium americanum), and powdery alligator-flag (Thalia dealbata), all common wetland macrophytes found in the Mississippi Delta, USA, agricultural region. Permethrin-enriched water (target concentration, 5 μg L−1) was pumped in at a 4-h hydraulic retention time at one end of the tub and discharged at the far end. Water samples were collected from discharge at 1-h intervals for 12 h and analyzed for permethrin concentrations. Permethrin removal rates were compared for the four different plant treatments and nonvegetated sediment-water controls. Results indicated that no particular single plant species was more effective at removing permethrin in water relative to unplanted controls. Overall mass reductions (from inflow to outflow) for cis-permethrin ranged from 67% ± 6% in T. latifolia to 71% ± 2% in L. oryzoides. The trans-permethrin overall mass reductions ranged from 76% ± 4% in S. americanum to 82% ± 2% in the unplanted control. Sediment and plant samples collected at the study conclusion indicated that 77%–95% of measured permethrin mass was associated with sediment for mesocosms planted with L. oryzoides, T. latifolia, and T. dealbata. Conversely, mesocosms planted with S. americanum had 83% of measured mass associated with the plant material. Specific plant-pesticide retention studies can lead to improved planning for best management practices and remediation techniques such as constructed wetlands and vegetated agricultural drainage ditches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bar-Ilan I, Shmerkin S, Mingelgrin U, Levanon D (2000) Survey of pesticide distribution in upper Jordan basin. Water Air Soil Pollut 119:139–156. doi:10.1023/A:1005138411271

    Article  CAS  Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S Jr (2000) Method for simultaneous extraction and analysis of two current use pesticides, atrazine and lambda-cyhalothrin, in sediment and aquatic plants. Bull Environ Contamin Toxicol 64:825–833. doi:10.1007/s001280000077

    Article  CAS  Google Scholar 

  • Bennett ER, Moore MT, Cooper CM, Smith S Jr, Shields FD Jr, Drouillard KG, Schulz R (2005) Vegetated agricultural drainage ditches for the mitigation of pyrethroid-associated runoff. Environ Toxicol Chem 24(9):2121–2127. doi:10.1897/04-357R.1

    Article  CAS  Google Scholar 

  • Cooper CM (1991) Persistent organochlorine and current use insecticide concentrations in major watershed components of Moon Lake, Mississippi, USA. Arch Hydrobiol 121:103–113

    CAS  Google Scholar 

  • Cooper CM, Moore MT, Bennett ER, Smith S Jr, Farris JL, Milam CD, Shields FD Jr (2004) Innovative uses of vegetated drainage ditches for reducing agricultural runoff. Water Sci Technol 49(3):117–123

    CAS  Google Scholar 

  • Daniels WM, House WA, Rae JE, Parker A (2000) The distribution of micro-organic contaminants in river bed-sediment cores. Sci Total Environ 253:81–92. doi:10.1016/S0048-9697(00)00379-X

    Article  CAS  Google Scholar 

  • Garcinuno RM, Fernandez-Hernando P, Camara C (2006) Removal of carbaryl, linuron, and permethrin by Lupinus angustifolius under hydroponic conditions. J Agric Food Chem 54:5034–5039. doi:10.1021/jf060850j

    Article  CAS  Google Scholar 

  • Gilliam JW (1994) Riparian wetlands and water quality. J Environ Qual 23:896–900

    Google Scholar 

  • House WA, Farr IS, Orr DR, Ou Z (1991) The occurrence of synthetic pyrethroid and selected organochlorine pesticides in river sediments. Br Crop Protect Council Monogr 47:183–192

    CAS  Google Scholar 

  • Imgrund H (2003) Environmental fate of permethrin. Available at: http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/permethrin.pdf. Accessed January 9, 2009

  • Kirby-Smith WW, Eisenreich SJ, Howe JT, Luettich RA Jr (1992) The effects in estuaries of pesticide runoff from adjacent farm lands. Final project report. U.S. Environmental Protection Agency, Gulf Breeze, FL

  • Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251

    Article  CAS  Google Scholar 

  • Kreuger JK, Brink N (1988) Losses of pesticides from agriculture. In: Pesticides: food and environmental implications. International Atomic Energy Agency, Vienna, Austria, pp 101–112

  • Kreuger J, Peterson M, Lundgren E (1999) Agricultural inputs of pesticide residues to stream and pond sediments in a small catchment in southern Sweden. Bull Environ Contam Toxicol 62:55–62. doi:10.1007/s001289900841

    Article  CAS  Google Scholar 

  • Laskowski DA (2002) Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol 174:49–170

    CAS  Google Scholar 

  • Lee S, Gan J, Kim J-S, Kabashima JN, Crowley DE (2004) Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ Toxicol Chem 23(1):1–6. doi:10.1897/03-114

    Article  CAS  Google Scholar 

  • Lutnicka H, Bogacka T, Wolska L (1999) Degradation of pyrethroids in an aquatic ecosystem model. Water Res 33(16):3441–3446. doi:10.1016/S0043-1354(99)00054-8

    Article  CAS  Google Scholar 

  • Moore MT, Rodgers JH Jr, Cooper CM, Smith S Jr (2000) Constructed wetlands for mitigation of atrazine-associated agricultural runoff. Environ Pollut 110:393–399. doi:10.1016/S0269-7491(00)00034-8

    Article  CAS  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S Jr, Shields FD Jr, Milam CD, Farris JL (2001a) Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agr Ecosyst Environ 87:309–314. doi:10.1016/S0167-8809(01)00148-7

    Article  CAS  Google Scholar 

  • Moore MT, Rodgers JH Jr, Cooper CM, Smith S Jr (2001b) Mitigation of metolachlor-associated agricultural runoff using constructed wetlands. Agr Ecosyst Environ 84:169–176. doi:10.1016/S0167-8809(00)00205-X

    Article  CAS  Google Scholar 

  • Moore MT, Schulz R, Cooper CM, Smith S Jr, Rodgers JH Jr (2002) Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere 46:827–835. doi:10.1016/S0045-6535(01)00189-8

    Article  CAS  Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S Jr, Farris JL, Drouillard KG, Schulz R (2006) Influence of vegetation in mitigation of methyl parathion runoff. Environ Pollut 142(2):288–294. doi:10.1016/j.envpol.2005.10.009

    Article  CAS  Google Scholar 

  • Moore MT, Denton DL, Cooper CM, Wrysinski J, Miller JL, Reece K, Crane D, Robins P (2008) Mitigation assessment of vegetated drainage ditches for collecting irrigation runoff in California. J Environ Qual 37:486–493. doi:10.2134/jeq2007.0172

    Article  CAS  Google Scholar 

  • Rawn GP, Webster GRB, Muir DCG (1982) Fate of permethrin in model outdoor ponds. J Environ Sci Health B 17(5):463–486. doi:10.1080/03601238209372335

    Article  CAS  Google Scholar 

  • Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: A review. J Environ Qual 33:419–448

    CAS  Google Scholar 

  • Schulz R, Peall SKC, Dabrowski JM, Reinecke AJ (2001) Spray deposition of two insecticides into surface waters in a South African orchard area. J Environ Qual 30:814–822

    CAS  Google Scholar 

  • Solomon KR, Yoo JY, Lean D, Kaushik NK, Day KE (1985) Dissipation of permethrin in limnocorrals. Can J Fish Aqua Sci 42(1):70–76. doi:10.1139/f85-009

    Article  CAS  Google Scholar 

  • Smith S Jr, Cooper CM (2004) Pesticides in shallow groundwater and lake water in the Mississippi Delta MSEA. In: Nett M, Locke MA, Pennington D (eds), Water quality assessments in the Mississippi delta, regional solutions, national scope. ACS symposium series 877. American Chemical Society, Oxford University Press, Chicago, IL, pp 91–103

  • Smith S Jr, Cooper CM, Lizotte RE Jr, Shields FD Jr (2006) Storm pesticide concentrations in Little Toposhaw Creek, USA. Int J Ecol Environ Sci 32:173–182

    Google Scholar 

  • Sundaram KMS (1991) Fate and short-term persistence of permethrin insecticide injected in a northern Ontario (Canada) headwater stream. Pest Sci 31:281–294. doi:10.1002/ps.2780310304

    Article  CAS  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Engin 18:647–658. doi:10.1016/S0925-8574(02)00026-5

    Article  Google Scholar 

  • Tanabe A, Mitobe H, Kawata K, Yasuhara A, Shibamoto T (2001) Seasonal and spatial studies on pesticide residues in surface waters of the Shinano River in Japan. J Agr Food Chem 49:3847–3852. doi:10.1021/jf010025x

    Article  CAS  Google Scholar 

  • USEPA (2006) Permethrin facts (Reregistration Eligibility Decision [RED] fact sheet). EPA 738-F-06-012. U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC

  • USEPA (2008) Available at: http://iaspub.epa.gov/waters/national_rept.control. Accessed February 20, 2008

  • Wilcock RJ, Northcott GL, Nagels JW (1994) Mass losses and changes in concentration of chlorpyrifos and cis- and trans-permethrin applied to the surface of a stream. Bull Environ Contamin Toxicol 53:337–343. doi:10.1007/BF00197223

    Article  CAS  Google Scholar 

  • Willis GH, McDowell LL, Smith S Jr, Southwick LM (1986) Permethrin wash-off from cotton plants by simulated rainfall. J Environ Qual 15(2):116–120

    Article  CAS  Google Scholar 

  • Willis GH, McDowell LL, Smith S Jr, Southwick LM (1994) Permethrin and sulprofos wash-off from cotton plants as a function of time between application and initial rainfall. J Environ Qual 23:96–100

    CAS  Google Scholar 

  • Wolverton BC, Harrison DD (1973) Aquatic plants for removal of mevinphos for the aquatic environment. J Miss Acad Sci 19:84–88

    Google Scholar 

  • Yang WC, Gan J, Hunter W, Spurlock F (2006) Effect of suspended solids on bioavailablity of pyrethroid insecticides. Environ Toxicol Chem 25(6):1585–1591. doi:10.1897/05-448R.1

    Article  Google Scholar 

  • Yang WC, Hunter W, Spurlock F, Gan J (2007) Bioavailability of permethrin and cyfluthrin in surface waters with low levels of dissolved organic matter. J Environ Qual 36:1678–1685. doi:10.2134/jeq2007.0164

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank L. Brooks, R. L. Lee, C. Helms, R. Menon, and B. McNeely for sample collection and analysis assistance. Thanks also go to P. Rodrigue and the USDA-NRCS Plant Materials Center in Coffeeville, Mississippi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, M.T., Kröger, R., Cooper, C.M. et al. Ability of Four Emergent Macrophytes to Remediate Permethrin in Mesocosm Experiments. Arch Environ Contam Toxicol 57, 282–288 (2009). https://doi.org/10.1007/s00244-009-9334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-009-9334-7

Keywords

Navigation