Skip to main content
Log in

Bacterial Diversity at Abandoned Uranium Mining and Milling Sites in Bulgaria as Revealed by 16S rRNA Genetic Diversity Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Radionuclide and heavy metal contamination influences the composition and diversity of bacterial communities, thus adversely affecting their ecological role in impacted environments. Bacterial communities from uranium and heavy metal-contaminated soil environments and mine waste piles were analyzed using 16S rRNA gene retrieval. A total of 498 clones were selected, and their 16S rDNA amplicons were analyzed by restriction fragment length polymorphism, which suggested a total of 220 different phylotypes. The phylogenetic analysis revealed Proteobacteria, Acidobacteria, and Bacteroidetes as the most common bacterial taxa for the three sites of interest. Around 20–30 % of the 16S rDNA sequences derived from soil environments were identified as Proteobacteria, which increased up to 76 % (mostly Gammaproteobacteria) in bacterial communities inhabiting the mine waste pile. Acidobacteria, known to be common soil inhabitants, dominated in less contaminated environments, while Bacteroidetes were more abundant in highly contaminated environments regardless of the type of substratum (soil or excavated gravel material). Some of the sequences affiliated with Verrucomicrobia, Actinobacteria, Chloroflexi, Planctomycetes, and Candidate division OP10 were site specific. The relationship between the level of contamination and the rate of bacterial diversity was not linear; however, the bacterial diversity was generally higher in soil environments than in the mine waste pile. It was concluded that the diversity of the bacterial communities sampled was influenced by both the degree of uranium and heavy metal contamination and the site-specific conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akob, D. M., Mills, H. J., Swofford, D. L., & Kostka, J. E. (2007). Metabolically active microbial communities in uranium-contaminated subsurface sediments. FEMS Microbiology Ecology, 59(1), 95–107.

    Article  CAS  Google Scholar 

  • Álvarez, B., López, M. M., & Biosca, E. G. (2007). Influence of native microbiota on survival of Ralstonia solanacearum phylotype II in river water microcosms. Applied Environmental Microbiology, 73(22), 7210–7217.

    Article  Google Scholar 

  • Bachmaf, S., Planer-Friedrich, B., & Merkel, B. J. (2008). Effect of sulfate, carbonate, and phosphate on the uranium (VI) sorption behavior onto bentonite. Radiochimica Acta, 96(1), 359–366.

    CAS  Google Scholar 

  • Barns, S., Cain, E. C., Sommerville, L., & Kuske, C. R. (2007). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Applied Environmental Microbiology, 73(3), 3113–3116.

    Article  CAS  Google Scholar 

  • Bertolacini, R. J., & Barney, J. E. (1957). Colorimetric determination of sulfate with barium chloanilate. Analytical Chemistry, 29(2), 281–283.

    Article  CAS  Google Scholar 

  • Brodie, E. L., DeSantis, T. Z., Joyner, D. C., Baek, S. M., Larsen, J. T., Andersen, G. L., et al. (2006). Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Applied Environmental Microbiology, 72(9), 6288–6298.

    Article  CAS  Google Scholar 

  • Bruemmer, G. W., Gerth, J., & Herms, U. (1986). Heavy metal species, mobility and availability in soils. Journal of Plant Nutrition and Soil Science, 149, 382–398.

    Article  CAS  Google Scholar 

  • Cardenas, E., Wu, W. M., Leigh, M. B., Carley, J., Carroll, S., Gentry, T., et al. (2008). Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Applied Environmental Microbiology, 74, 3718–3729.

    Article  CAS  Google Scholar 

  • Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal Statistics, 11, 265–270.

    Google Scholar 

  • DeBruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., & Radosevich, M. (2011). Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied Environmental Microbiology, 77(17), 6295–6300.

    Article  CAS  Google Scholar 

  • DeSantis, T. Z., Brodie, E. L., Moberg, J. P., Zubieta, I. X., Piceno, Y. M., & Andersen, G. L. (2007). High-density universal 16S rRNA microarray analysis reveals broader diversity than typical clone library when sampling the environment. Microbial Ecology, 53(3), 371–383.

    Article  CAS  Google Scholar 

  • Dhal, P. K., Islam, E., Kazy, S. K., & Sar, P. (2011). Culture-independent molecular analysis of bacterial diversity in uranium-ore/-mine waste-contaminated and non-contaminated sites from uranium mines. 3 Biotech, 1, 261–272.

    Article  Google Scholar 

  • Dunfield, K. E., & King, G. M. (2004). Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits. Applied Environmental Microbiology, 70, 4242–4248.

    Article  CAS  Google Scholar 

  • Echevarria, G., Sheppard, G., & Morel, J. I. (2001). Effect of pH on the sorption of uranium in soils. Journal Environmental Radioactivity, 53(2), 257–264.

    Article  CAS  Google Scholar 

  • Eichorst, S. A., Breznak, J. A., & Schmidt, T. M. (2007). Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Applied Environmental Microbiology, 73(8), 2708–2717.

    Article  CAS  Google Scholar 

  • Elshahed, M. S., Youssef, N. H., Spain, A. M., Sheik, C., Najar, F. Z., Sukharnikov, L. O., et al. (2008). Novelty and uniqueness patterns of rare members of the soil biosphere. Applied Environmental Microbiology, 74(17), 5422–5428.

    Article  CAS  Google Scholar 

  • Fields, M. W., Yan, T., Rhee, S. K., Carroll, S. L., Jardine, P. M., Watson, D. B., et al. (2005). Impacts on microbial communities and cultivable isolate from groundwater contaminated with high levels of nitric acid uranium waste. FEMS Microbiology Ecology, 53(3), 417–428.

    Article  CAS  Google Scholar 

  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Science USA, 103(3), 626–631.

    Article  CAS  Google Scholar 

  • Francis, A. J., Gillow, J. B., Dodge, C. J., Harris, R., Beveridge, T. J., & Papenguth, H. W. (2004). Uranium association with halophilic and non-halophilic bacteria and archaea. Radiochimica Acta, 92(3), 481–488.

    Article  CAS  Google Scholar 

  • Fredrickson, J., Zachara, J., Balkwill, D., Kennedy, D., Li, S. M., Kostandarithes, H., et al. (2004). Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington State. Applied Environmental Microbiology, 70(7), 4230–4241.

    Article  CAS  Google Scholar 

  • Fredrickson, J. K., & Balkwill, D. L. (1998). Sampling and enumeration techniques. In R. S. Burlage, R. Atlas, D. Stahl, G. Geesey, & G. Sayler (Eds.), Techniques in microbial ecology (pp. 239–254). New York: Oxford University Press.

    Google Scholar 

  • Geissler, A., & Selenska-Pobell, S. (2005). Addition of U (VI) to a uranium mining waste sample and resulting changes in the indigenous bacterial community. Geobiology, 3(4), 275–285.

    Article  CAS  Google Scholar 

  • Geissler, A., Merroun, M., Geipel, G., Reuther, H., & Selenska-Pobell, S. (2009). Biochemical changes induced in uranium waste pile samples by uranyl nitrate treatments under anaerobic conditions. Geobiology, 7(3), 1–13.

    Article  Google Scholar 

  • Gomila, M., Bowien, B., Falsen, E., Moore, E. R., & Lalucat, J. (2007). Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. International Journal of Systematic Evolutionary Microbiology, 57(PT 11), 2629–2635.

    Article  CAS  Google Scholar 

  • Hannun, Y. A., & Luberto, C. (2000). Ceramide in the eukaryotic stress response. Trends in Cell Biology, 10(2), 73–79.

    Article  CAS  Google Scholar 

  • Hazen, T. C., & Tabak, H. H. (2005). Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 2. Field research on bioremediation of metals and radionuclides. Reviews in Environmental Science and Biotechnology, 4, 157–183.

    Article  CAS  Google Scholar 

  • Hobbie, J. E., Daley, R. J., & Jasper, S. (1977). Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied Environmental Microbiology, 3(5), 1225–1228.

    Google Scholar 

  • Holmes, D. E., Finneran, K. T., O’Neil, R. A., & Lovley, D. R. (2002). Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Applied Environmental Microbiology, 68(5), 2300–2306.

    Article  CAS  Google Scholar 

  • Huber, T., Faulkner, G., & Hugenholtz, P. (2005). Bellerophon: a program to detect chimeric sequence in multiple sequence alignments. Bioinformatics (Oxf), 20(14), 2317–2319.

    Article  Google Scholar 

  • Islam, E., Dnal, P. K., Kazy, S. K., & Sar, P. (2011). Molecular analysis of bacterial communities in uranium ores and surrounding soils from Banduhurang open cast uranium mine, India: a comparative study. Journal of Environmental Science and Health A, 46, 271–280.

    Article  CAS  Google Scholar 

  • Islam, E., & Sar, P. (2011). Molecular assessment on impact of uranium ore contamination in soil bacterial diversity. International Biodeterioration & Biodegradation, 65(7), 1043–1051.

    Article  CAS  Google Scholar 

  • Janssen, P. H. (2006). Identifying the dominant soil taxa in libraries of 16S rRNA and 16S rRNA genes. Applied Environmental Microbiology, 72(3), 1719–1728.

    Article  CAS  Google Scholar 

  • Kaurichev, I. S. (1980). Organic matter determination in soil samples by Thurin’s method. Manual of pedological practices. Moscow: Kolos.

    Google Scholar 

  • Kielak, A., Rodrigues, J. L. M., Kuramae, E. E., Chain, P. S. G., van Veen, J. A., & Kowalchuk, G. A. (2009). Phylogenetic and metagenomic analysis of Verrucomicrobia in former agricultural grassland soil. FEMS Microbiology Ecology, 70, 236–248.

    Article  Google Scholar 

  • King, G. M., Weber, C. F., Ohta, H., Sato, Y., & Nanba, K. (2008). Molecular survey and activities of carbon monoxide oxidizing bacteria on volcanic deposits in Miyake-jima, Japan. Microbes and Environments, 23, 299–305.

    Article  Google Scholar 

  • Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). Chichester: Wiley.

    Google Scholar 

  • Magurran, A. E. (1988). Ecological diversity and its measurements. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Mahmoud, K. K., Leduc, L. G., & Ferroni, G. D. (2005). Detection of Acidithiobacillus ferrooxidans in acid mine drainage environments using fluorescent in situ hybridization (FISH). Journal of Microbiological Methods, 61(1), 33–45.

    Article  CAS  Google Scholar 

  • McCullough, J., Hazen, T., & Benson, S. (1999). Bioremediation of metals and radionuclides: what it is and how it works. LBNL paper LBNL-42595. Lawrence: Lawrence Berkeley National Laboratory, pp. 5–8.

  • McLean, J., & Beveridge, T. J. (2001). Chromate reduction by a pseudomonad isolated from a site contaminated with chromate copper arsenate. Applied Environmental Microbiology, 67(3), 1076–1084.

    Article  CAS  Google Scholar 

  • Merroun, M., Henning, C., Rossberg, A., Reich, T., Nicolai, R., Heise, K.-H., et al. (2002). Characterization of uranium (VI) complexes formed by different bacteria relevant to uranium mining waste pile. In B. J. Merkel, B. Planer-Friedrich, & C. Wolkerdorger (Eds.), Uranium in the aquatic environment (pp. 505–511). Berlin: Springer.

    Chapter  Google Scholar 

  • Merroun, M. L., & Selenska-Pobell, S. (2008). Bacterial interactions with uranium and environmental perspectives. Journal of Contaminant Hydrology, 102, 285–295.

    Article  CAS  Google Scholar 

  • Merroun, M. L., Nedelkova, M., Ojeda, J. J., Reitz, T., Fernandez, M. L., Arias, J. M., et al. (2011). Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses. Journal of Hazardous Materials, 197, 1–10.

    Article  CAS  Google Scholar 

  • Mondani, L., Benzerara, K., Carriere, M., Christen, R., Mamindy-Pajany, Y., Fevrier, L., et al. (2011). Influence of uranium on bacterial communities: a comparison of natural uranium-rich soils with controls. PloS One, 6, e25771.

    Article  CAS  Google Scholar 

  • MPSM, Master Plan of Sofia Municipality. (2009). 1, p. 234. http://www.sofproect.com/ovos_web.aspx?AspxAutoDetectCookieSupport=1 (in Bulgarian).

  • Neu, M. P., Boukhalfa, H., & Merroun, M. L. (2010). Biomineralization and biotransformations of actinide materials. MRS Bulletin, 35(11), 849–857.

    Article  CAS  Google Scholar 

  • Nicol, G. W., Leininger, S., Schleper, C., & Prosser, J. (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidising archaea and bacteria. Environmental Microbiology, 10(11), 2966–2978.

    Article  CAS  Google Scholar 

  • Pepper, I. L., Zerzghi, H. G., Bengson, S. A., Iker, B. C., Banerjee, M. J., & Brooks, J. P. (2012). Bacterial populations within copper mine tailings: long-term effects of amendment with class A biosolids. Journal of Applied Microbiology, 113(3), 569–577.

    Article  CAS  Google Scholar 

  • Ordinance 3/1.08.2008—Bulgarian legislation. Sofia: Ministry of Environment and Water. http://www3.moew.government.bg/?show=top&cid=388.

  • Radeva, G., & Selenska-Pobell, S. (2005). Bacterial diversity in water samples from uranium wastes as demonstrated by 16S rDNA and ribosomal intergenic spacer amplification retrievals. Canadian Journal of Microbiology, 51(1), 1–14.

    Google Scholar 

  • Rastogi, G., Osman, S., Vaishampayan, P. A., Andersen, G. L., Stetler, L. D., & Sani, R. K. (2010). Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Microbial Ecology, 59(1), 84–108.

    Article  Google Scholar 

  • Rickard, A. H., McBain, A. J., Stead, A. T., & Gilbert, P. (2004). Effects of fluid shear force upon the diversity and species interactions within freshwater biofilms. Applied Environmental Microbiology, 70(12), 7426–7435.

    Article  CAS  Google Scholar 

  • Satchanska, G., & Selenska-Pobell, S. (2005). Bacterial diversity in the uranium mill-tailing Gittersee as estimated via a 16S rDNA approach. Comptes Rendu of Academy Bulgarian of Science, 58(4), 1105–1112.

    CAS  Google Scholar 

  • Satchanska, G., Ivanova, I., Grudeva, V., Pencheva, E., Kerestedjian, N., & Golovinsky, E. (2005). Culture-dependent approach for determining microbial diversity in soils from KCM/AGRIA region. Comptes Rendu of Academy Bulgarian of Science, 58(4), 409–416.

    Google Scholar 

  • Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied Environmental Microbiology, 75(23), 7537–7541.

    Article  CAS  Google Scholar 

  • Schulin, R., Keller, A., Daskalova, A., Mondeshka, M., Dinev, N., Koutev, V., et al. (2004). Geostatistical soil quality assessment and regional mass flux analysis for sustainable land use: planning and management. Report of the Swiss National Science Foundation, Scientific Cooperation between Eastern Europe and Switzerland SCOPES, IP 062642, p. 102.

  • Selenska-Pobell, S. (2002). Diversity and activity of bacteria in uranium waste piles. In M. J. Keith-Roach & F. R. Livens (Eds.), Interactions of microorganisms with radionuclides (pp. 225–254). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Selenska-Pobell, S., Kampf, G., Flemming, K., Radeva, G., & Satchanska, G. (2001). Bacterial diversity in soil samples from two uranium mining waste piles as determinate by rep-APD, RISA and the 16S rDNA retrieval. Antonie van Leeuwenhoek Journal of Microbiology, 79(2), 149–161.

    Article  CAS  Google Scholar 

  • Shawky, S., Abdel-Geleel, Μ., & Aly, A. (2005). Sorption of uranium by non-living water hyacinth roots. Journal of Radioanalytical Nuclear Chemistry, 265(1), 81–84.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Kelly, S. D., Kemner, K. M., & Banfield, J. F. (2005). Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Applied Environmental Microbiology, 71(4), 1790–1797.

    Article  CAS  Google Scholar 

  • Thomas, F., Heremann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut Bacteroidetes: the food connection. Frontiers in Microbiology, 2, 93. doi:10.3389/fmicb.2011.00093.

    Article  Google Scholar 

  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.

    Article  CAS  Google Scholar 

  • Van Spanning, R. J., Delgado, M. J., & Richardson, D. J. (2005). The nitrogen cycle: denitrification and its relationship to N2 fixation. In D. Werner & W. E. Wewlon (Eds.), Nitrogen fixation in agriculture, forestry, ecology and the environment (pp. 277–342). the Netherlands: Springer.

    Chapter  Google Scholar 

  • Vandekerckhove, T. T. M., Coomans, A., Cornelis, K., Baert, P., & Gillis, M. (2002). Use of the Verrucomicrobia-specific probe EEUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematodes hosts. Applied Environmental Microbiology, 68(6), 3121–3125.

    Article  CAS  Google Scholar 

  • Vishnivetskaya, T. A., Mosher, J., Palumbo, A. V., Yang, Z. K., Brown, S. D., Brooks, S. C., et al. (2011). Mercury and other heavy metals influence bacterial community structure in contaminated Tennesse streams. Applied Environmental Microbiology, 77(1), 302–311.

    Article  CAS  Google Scholar 

  • Villemur, R., Lanthier, M., Beaudet, R., & Lepine, F. (2006). The Desulfobacterium genus. FEMS Microbiological Reviews, 30(5), 706–733.

    Article  CAS  Google Scholar 

  • Weber, C. F., & King, G. M. (2010). Diversity and distribution of carbon-oxidizing bacteria and bulk bacterial communities across a succession gradient on a Hawaiian volcanic deposit. Environmental Microbiology, 12(7), 1855–1867.

    Article  CAS  Google Scholar 

  • Weber, C. F., & King, G. M. (2012). The phylogenetic distribution and ecological role of carbon monoxide oxidation in the genus Burkholderia. FEMS Microbial Ecology, 79(1), 167–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Fund of the Bulgarian Ministry of Education and Science (Grants 1114/04 and IFC-B-602/07) and the Institute of Resource Ecology, HZDR, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galina Radeva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radeva, G., Kenarova, A., Bachvarova, V. et al. Bacterial Diversity at Abandoned Uranium Mining and Milling Sites in Bulgaria as Revealed by 16S rRNA Genetic Diversity Study. Water Air Soil Pollut 224, 1748 (2013). https://doi.org/10.1007/s11270-013-1748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1748-1

Keywords

Navigation