Skip to main content
Log in

DNAPL TCE Oxidation with Permanganate: Influence of the Phase Transfer Catalyst Pentyltriphenylphosphonium

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Dense nonaqueous phase (DNAPL) trichloroethylene (TCE) degradation by potassium permanganate (KMnO4) was investigated in the presence of the cationic surfactant pentyltriphenylphosphonium (PTPP) bromide, acting as a phase transfer catalyst. Series of batch tests were performed in 5.0-mL conical vials containing Milli-Q water and 1.0 mM DNAPL TCE with initial permanganate concentrations ([MnO4 ]0) of 1.0, 2.0, 3.0, and 5.0 mM, adding PTPP (0, 10, and 20 mol% of permanganate, respectively). Chloride ion (Cl) and MnO4 in water samples were analyzed to observe MnO4 consumption and TCE degradation over the elapsed time (0 to 90 min). The calculated values of pseudo first-order rate constants for MnO4 consumption indicated that the rate of MnO4 depletion increased with higher mole percent PTPP. At experimental conditions of 1.0 and 2.0 mM [MnO4 ]0, analyses of Cl concentration showed that higher mole percent of PTPP induced greater Cl release, indicating faster TCE oxidation. On the other hand, for 3.0 and 5.0 mM [MnO4 ]0, the concentration of Cl was lower with the presence of PTPP. This result indicated that MnO4 had migrated further into the inner space of DNAPL, and consequently, the Cl took a longer time to diffuse from DNAPL to an aqueous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aulenta, F., Majone, M., & Tandoi, V. (2006). Enhanced anaerobic bioremediation of chlorinated solvents: environmental factors influencing microbial activity and their relevance under field conditions. J. Chem. Technol. Biotechnol. Rev., 81, 1463–1474.

    Article  CAS  Google Scholar 

  • Choi, K., & Lee, W. (2012). Enhanced degradation of trichloroethylene in nano-scale zero-valent iron Fenton system with Cu(II). Journal of Hazardous Materials, 211–212, 146–153.

    Article  Google Scholar 

  • Davie, M. G., Cheng, H., Hopkins, G., & Lebron, C. (2008). Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater. Environmental Science and Technology, 42, 8908–8915.

    Article  CAS  Google Scholar 

  • Destailats, H., Aldersion, T. W., & Hoffmann, M. R. (2001). Applications of ultrasound in NAPL remediation: sonochemical degradation of TCE in aqueous surfactant solutions. Environmental Science and Technology, 35, 3019–3024.

    Article  Google Scholar 

  • Gates-Anderson, D. D., Siegrist, R. L., & Cline, S. R. (2001). Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. Journal of Environmental Engineering, 127, 337–347.

    Article  CAS  Google Scholar 

  • Gomes, H. I., Dias-Ferreira, C., & Ribeiro, A. B. (2012). Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere, 87, 1077–1090.

    Article  CAS  Google Scholar 

  • Huang, K. C., Hoag, G. E., Chheda, P., Woody, B. A., & Dobbs, G. M. (1999). Kinetic study of oxidation of trichloroethylene by potassium permanganate. Environmental Engineering Science, 16, 265–274.

    Article  CAS  Google Scholar 

  • Kim, K., & Gurol, M. (2005). Reaction of nonaqueous phase TCE with permanganate. Environmental Science and Technology, 39, 9303–9308.

    Article  CAS  Google Scholar 

  • Kim, Y. S., Jafvert, C. T., Yoon, S., Hyun, S., & Johnson, B. (2009). Potential consolidation-induced NAPL migration from coal tar impacted river sediment under a remedial sand cap. Journal of Hazardous Materials, 162, 1364–1370.

    Article  CAS  Google Scholar 

  • Kim, Y. S., Nyberg, L. M., Jenkinson, B., & Jafvert, C. T. (2013). PAH concentration gradients and fluxes through sand cap test cells installed in situ over river sediments containing coal tar. Environ. Sci Processes Impacts, 15, 1601–1612.

    Article  CAS  Google Scholar 

  • Lee, E. S., Seol, Y., Fang, Y. C., & Schwartz, F. W. (2003). Destruction efficiencies dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene. Environmental Science and Technology, 37, 2540–2546.

    Article  CAS  Google Scholar 

  • Li, Z. (2004). Surfactant-enhanced oxidation of trichloroethylene by permangnate-proof of concept. Chemosphere, 54, 419–423.

    Article  CAS  Google Scholar 

  • Liang, S. H., Kuo, Y. C., Chen, S. H., Chen, C. Y., & Kao, C. M. (2013). Development of a slow polycolloid-releasing substrate (SPRS) biobarrier to remediate TCE-contaminated aquifers. Journal of Hazardous Materials, 254–255, 107–115.

    Article  Google Scholar 

  • Liu, Y. Q., Phenrat, T., & Lowry, G. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination. Environmental Science and Technology, 41, 7881–7887.

    Article  CAS  Google Scholar 

  • Masten, S. J., & Davies, S. H. R. (1997). Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. Journal of Contaminant Hydrology, 28, 327–335.

    Article  CAS  Google Scholar 

  • Mercer, J. W., & Cohen, R. M. (1990). A review of immiscible fluids in the subsurface: properties, models, characterization and remediation. Journal of Contaminant Hydrology, 6, 107–163.

    Article  CAS  Google Scholar 

  • Pant, P., & Pant, S. (2010). A review: advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences, 22, 116–126.

    Article  CAS  Google Scholar 

  • Rao, P. S. C., Annable, M. D., & Kim, H. (2000). NAPL source zone characterization and remediation technology performance assessment: recent developments and applications of tracer techniques. Journal of Contaminant Hydrology, 45, 63–78.

    Article  CAS  Google Scholar 

  • Rothmel, R., Peters, R., Martin, E., & Deflaun, M. (1998). Surfactant foam/bioaugmentation technology for in situ treatment of TCE-DNAPLs. Environmental Science and Technology, 32, 1667–1675.

    Article  CAS  Google Scholar 

  • Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T., & Stickney, B. (1998). Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. Journal of Contaminant Hydrology, 29, 205–224.

    Article  CAS  Google Scholar 

  • Seol, Y., & Schwartz, F. W. (2000). Phase-transfer catalysis applied to nonaqueous phase trichloroethylene by potassium permanganate. Journal of Contaminant Hydrology, 44, 185–201.

    Article  CAS  Google Scholar 

  • Stroo, H. F., Ward, C. H., Kavanaugh, M. C., Vogel, C., Leeson, A., Marqusee, J. A., & Smith, B. P. (2003). Remediating chlorinated solvent source zones. Environmental Science and Technology, 37, 224–230.

    Article  Google Scholar 

  • Tobiszewski, M., & Namieśnik, J. (2012). Abiotic degradation of chlorinated ethanes and ethenes in water. Environ. Sci. Pollut. R., 19, 1994–2006.

    Article  CAS  Google Scholar 

  • Waldemer, R. H., Tratnyek, P. G., Johnson, R. L., & Nurmi, J. T. (2007). Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environmental Science and Technology, 41, 1010–1015.

    Article  CAS  Google Scholar 

  • Wang, Q., Jeong, S., & Choi, S. (2012). Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification. Journal of Hazardous Materials, 213–214, 299–310.

    Article  Google Scholar 

  • Wilson, B., Ni, X., & Sherrington, D. C. (2001). On the investigation of a phase-transfer catalysis reaction in an oscillatory baffled reactor. Industrial and Engineering Chemistry Research, 40, 5300–5304.

    Article  CAS  Google Scholar 

  • Yan, Y. E., & Schwartz, F. W. (2000). Kinetics and mechanisms for TCE oxidation by permanganate. Environmental Science and Technology, 34, 2535–2541.

    Article  CAS  Google Scholar 

  • Yeh, C. K., Wu, H. M., & Chen, T. C. (2003). Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. Journal of Hazardous Materials, 96, 29–51.

    Article  CAS  Google Scholar 

  • Yan, Y. E., & Schwartz, F. W. (1999). Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. Journal of Contaminant Hydrology, 37, 343–365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, K., Kim, Y.S. & Gurol, M.D. DNAPL TCE Oxidation with Permanganate: Influence of the Phase Transfer Catalyst Pentyltriphenylphosphonium. Water Air Soil Pollut 224, 1735 (2013). https://doi.org/10.1007/s11270-013-1735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1735-6

Keywords

Navigation