Skip to main content
Log in

Microbial Sulfate Reduction and Biogeochemistry of Arsenic and Chromium Oxyanions in Anaerobic Bioreactors

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A pilot-scale anaerobic bioreactor with high levels of microbial sulfate reduction, known to be capable of removing cationic metals from a metal- and acid-contaminated waste stream, was utilized to determine if the system would be effective in removing metals in the form of oxyanions such as arsenate and chromate. The system removed 90 % to >99 % of the arsenic and between 86 % and 94 % of the chromium from a waste stream containing 5 mg/L of each. Cadmium, copper, iron, lead, and zinc also were removed. An equilibrium geochemistry computer modeling code, MINTEQAK, modified from MINTEQA2, was used for the chemical modeling of processes in the bioreactor. Experimental evidence on the chemical and biological reduction of arsenic and chromium and fluorescent diffraction analysis of precipitates support the following hypotheses: the primary removal process for chromium was the reduction of Cr(VI) to Cr(III) by sulfides, followed by precipitation of chromium hydroxide [Cr(OH)3(s)]; removal of arsenic was by direct microbial enzymatic reduction of As(V) to As(III) followed by precipitation of arsenic sulfides (As2S3 or AsS). Experimental evidence and modeling with MINTEQAK confirmed that 90 % to 95 % of the removal of arsenic and chromium occurred in the first quarter volume of the bioreactor. Additional removal of arsenic and chromium occurred in the remaining volume of the bioreactor. The use of a sulfate reduction-based anaerobic treatment system was effective for metal-laden wastewater with elevated concentrations of arsenic and chromium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeniji, A. (2004). Bioremediation of arsenic, chromium, lead, and mercury. Washington: US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office.

    Google Scholar 

  • Aggett, J., & Lybley, S. (1986). Insight into the mechanism of accumulation of arsenate and phosphate in hydro lake sediments by measuring the rate of dissolution with ethylenediaminetetraacetic acid. Environmental Science and Technology, 20, 183–186.

    Article  CAS  Google Scholar 

  • Ahmann, D., Roberts, A. L., Krumholz, L. R., & Morel, F. M. M. (1994). Microbe grows by reducing arsenic. Nature, 371, 750.

    Article  CAS  Google Scholar 

  • Banerjee, G. (2010). Treatment of arsenic-laden water plant sludge by anaerobic digestion. Journal of Hazardous, Toxic, and Radioactive Waste, 14(2), 124–131.

    Article  CAS  Google Scholar 

  • Barton, L. L., & Fauque, G. D. (2009). Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Advances in Applied Microbiology, 68, 41–98.

    Article  CAS  Google Scholar 

  • Batal, W., Laudon, L., Wildeman, T., & Mohdnoordin, N. (1988). Bacteriological tests from the constructed wetland of the Big Five Tunnel, Idaho Springs, Colorado. International Conference on Constructed Wetlands for Waste Water Treatment. Chattanooga, Tennessee, 13 June 1988.

  • Callahan, M., Slimak, M., Gabel, N., May, I., Fowler, C., Freed, R., et al. (1979). Water-related environmental fate of 129 priority pollutants. I: 10–1 to 10–10. US EPA 440/4-79-029a. Springfield: Versar Inc.

    Google Scholar 

  • Cheung, K. H., & Gu, J.-D. (2007). Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. International Biodeterioration & Biodegradation, 59, 8–15.

    Article  CAS  Google Scholar 

  • Cohen, R. R. H., & Staub, S. W. (1992). Technical manual for the design and operation of a passive mine drainage treatment system (p. 69). Phoenix: US Bureau of Land Management.

    Google Scholar 

  • Costello, C. (2003). Acid mine drainage: innovative treatment technologies. Washington: US Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office.

    Google Scholar 

  • Dowdle, P., Laverman, A. M., & Oremland, R. S. (1996). Bacterial dissimilatory reduction of arsenic (V) to arsenic (III) in anoxic sediments. Applied and Environmental Microbiology, 62(5), 1664–1669.

    CAS  Google Scholar 

  • Dvorak, H., Hedin, R. S., & Harry, M. E. (1992). Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot-scale reactors. Biotechnology and Bioengineering, 40, 609–616.

    Article  CAS  Google Scholar 

  • Freeman, M. C. (1985). The reduction of arsenate to arsenite by an Anabaena-bacteria assemblage isolated from the Waikato River. New Zealand Journal of Marine and Freshwater Research, 19, 277–282.

    Article  CAS  Google Scholar 

  • Frost, R. R., & Griffin, R. A. (1977). Effect of pH on adsorption of arsenic(III) and arsenic(III plus V) using automated hydride-generation atomic-absorption spectrometry. Soil Science Society of American Journal, 52, 536–537.

    Google Scholar 

  • Fude, L., Harris, B., Urrutia, M. M., & Beveridge, T. J. (1994). Reduction of Cr(VI) by a consortium of sulfate-reducing bacteria (SRB III). Applied and Environmental Microbiology, 60(5), 1525–1531.

    CAS  Google Scholar 

  • Griffin, R. A., Au, A. K., & Frost, R. R. (1977). Effect of pH on adsorption of chromium from landfill-leachate by clay minerals. Journal of Environmental Science and Health, A12(8), 431–449.

    CAS  Google Scholar 

  • Hammack, R. W., & Edenborn, H. M. (1992). The removal of nickel from mine waters using bacterial sulfate reduction. Applied Microbiology and Biotechnology, 37, 674–678.

    Article  CAS  Google Scholar 

  • Hammack, R. W., Edenborn, H. M., & Dvorak, D. H. (1994). Treatment of water from an open-pit copper mine using biogenic sulfide and limestone: a feasibility study. Water Research, 28(11), 2321–2329.

    Article  CAS  Google Scholar 

  • Hollibaugh, J. T., Budinoff, C., Hollibaugh, R. A., Ransom, B., & Bano, N. (2006). Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a Soda Lake. Applied and Environmental Microbiology, 72, 2043–2049.

    Article  CAS  Google Scholar 

  • Honeyman, B. D., Leckie, J. O., Appleton, A. R., Ball, N. B., & Hayes, K. F. (1984). Adsorptive removal of trace elements from fly-ash pond effluents onto iron oxydroxide. EPRI-RP-910-1. Palo Alto: Electrical Power Institute.

    Google Scholar 

  • Horton, R. N., Apel, W. A., Thompson, V. S., & Sheridan, P. P. (2006). Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens. BMC Microbiology, 6, 5. doi:10.1186/1471-2180-6-5.

    Article  Google Scholar 

  • Icopini, G. A., Long, D. T., Ellis, R. J., & Marsh, T. L. (2007). Intrinsic remediation of a chromium contaminated wetland by biochemiocal stabilization. Proceedings of the 10th International Conference on Environmental Science and Technology, Greece, 5–7 September 2007.

  • Ishibashi, Y., Cervantes, C., & Silver, S. (1990). Chromium reduction in Pseudomonas putida. Applied and Environmental Microbiology, 56, 2268–2270.

    CAS  Google Scholar 

  • Kabata-Pendias, & Pendias, A. H. (1991). Trace elements in soils and plants (2nd ed., p. 365). Boca Raton: CRC Press, Inc.

    Google Scholar 

  • Karnchanawong, S. (2011). Fractions of copper, chromium and arsenic during the aerobic composting process of chicken manure and CCA-treated wood. 2011 International Conference on Environment Science and Engineering. IPCBEE vol. 8. Singapore: IACSIT.

    Google Scholar 

  • Kerndorff, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44(11), 1701–1708.

    Article  CAS  Google Scholar 

  • Klusman, R. W., Dvorak, D. H., & Borek, S. L. (1993). Modeling of wetlands and reactor systems used for mine drainage treatment. In: Proceedings, Vol. II. The challenge of integrating diverse perspectives in reclamation (pp. 685–704). 10th National Meeting, Spokane, Washington. May 16–19.

  • Laverman, A. M., Blum, J. S., Schaefer, J. K., Phillips, E. J. P., & Lovely, D. R. (1995). Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology, 61(10), 3556–3561.

    CAS  Google Scholar 

  • Livesey, N. T., & Huang, P. M. (1981). Adsorption of arsenate and its relation to selected chemical properties and anions. Soil Science, 133, 88–94.

    Article  Google Scholar 

  • Lovely, D. R., & Phillips, E. J. P. (1994). Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Applied and Environmental Microbiology, 60(2), 726–728.

    Google Scholar 

  • Lyew, D., Knowles, R., & Sheppard, J. (1994). The biological treatment of acid mine drainage under continuous flow conditions in a reactor. Trans IChemE, 72(B), 42–47.

    CAS  Google Scholar 

  • Manahan, S. E. (1989). Toxicological chemistry. Chelsea: Lewis, Inc. 317 p.

    Google Scholar 

  • Margerum, D. W., Cayley, G. R., Weatherburn, D. C., & Pagenkopf, G. K. (1978). Kinetics and mechanisms of complex: formation and ligand exchange. In A. E. Martell (Ed.), Coordination chemistry (Vol. 2). Washington: American Chemical Society. 636 p.

    Google Scholar 

  • Mok, W. M., Riley, J. A., & Wai, C. M. (1988). Arsenic speciation and quality of groundwater in a lead-zinc mine, Idaho. Water Research, 22, 769–774.

    Article  CAS  Google Scholar 

  • Morel, F. M. M., & Hering, J. G. (1993). Principles and applications of aquatic chemistry (p. 588). New York: Wiley.

    Google Scholar 

  • National Toxicology Program, Department of Health and Human Services (2011). Report on carcinogens. Twelfth Edition. Arsenic and inorganic arsenic compounds, CAS No. 7440-38-2. http://ntp.niehs.nih.gov/go/roc12.

  • Newman, D. K., Beveridge, T. J., & Morel, F. M. M. (1997). Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum. Applied and Environmental Microbiology, 63(5), 2022–2028.

    CAS  Google Scholar 

  • O’Reilly, S. E., Strawn, D. G., & Sparks, D. L. (2001). Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Science Society of America Journal, 65, 67–77.

    Article  Google Scholar 

  • Ohtake, H., Fujii, E., & Tada, K. (1990). Bacterial reduction of hexavalent chromium: kinetic aspects of chromate reduction by Enterobacter cloacae Ho1. Biocatalysis, 4, 227–235.

    Article  CAS  Google Scholar 

  • Postgate, J. R. (1984). The sulphate reducing bacteria. New York: Cambridge University Press.

    Google Scholar 

  • Rochette, E. A., Bostick, B. C., Li, G., & Fendorf, S. (2000). Kinetics of arsenate reduction by dissolved sulfide. Environmental Science & Technology, 34(22), 4714–4720.

    Article  CAS  Google Scholar 

  • Schroeder, D. C., & Lee, G. F. (1975). Potential transformations of chromium in natural waters. Water, Air, and Soil Pollution, 4, 355–365.

    Article  CAS  Google Scholar 

  • Schulze, E. D., & Mooney, H. A. (1993). Biodiversity and ecosystem function (pp. 88–90). New York: Springer.

    Book  Google Scholar 

  • Skousen, J. G., & Ziemkiewicz, P. F. (2005). Performance of 116 passive treatment systems for acid mine drainage. 2005 National Meeting of the American Society of Mining and Reclamation, Breckenridge, CO, 19–23 June 2005. Breckenridge: ASMR.

    Google Scholar 

  • Smillie, R. H., Hunter, K., & Loutit, M. (1981). Reduction of chromium (VI) by bacterially produced hydrogen sulfide in a marine environment. Water Research, 15, 1351–1354.

    Article  CAS  Google Scholar 

  • Smith, E., & Naidu, R. (2008). Chemistry of inorganic arsenic in soils: kinetics of arsenic adsorption-desorption. Environmental Geochemistry and Health, 2009(Suppl 1), 49–59.

    Google Scholar 

  • Staub, M. W. (1992). Passive mine drainage treatment in a bioreactor: the significance of flow, area, and residence time. M.S. Thesis, T-4090. Golden: Colorado School of Mines. 133 p.

    Google Scholar 

  • Stolz, J. F., Basu, P., & Oremland, R. S. (2010). Microbial arsenic metabolism new twists on an old poison. Microbe, 5, 53–59.

    Google Scholar 

  • Vanbroekhoven, K., Vermoortel, Y., Dielsand, L., & Gemoets, J. (2007). Stimulation of in situ bioprecipitation for the removal of hexavalent chromium from contaminated groundwater. In R. Cidu & F. Frau (Eds.), IMWA Symposium 2007: water in mining environments, 27th–31st May 2007. Italy: Cagliari.

    Google Scholar 

  • Wakao, N., Takahashi, T., Sakurai, Y., & Shiota, H. (1979). A treatment of acid mine water using sulfate-reducing bacteria. Journal of Fermentation Technology, 57(5), 445–452.

    CAS  Google Scholar 

  • Wang, P., Mori, T., Tada, K., & Ohtake, H. (1990). Membrane-associated chromate reductase activity from Enterobacter cloacae. Journal of Bacteriology, 172, 1670–1672.

    CAS  Google Scholar 

  • Widdel, F. (1988). Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In A. J. B. Zehnder (Ed.), Biology of anaerobic microorganisms (pp. 469–585). New York: Wiley.

    Google Scholar 

  • Wildeman, T. R., & Laudon, L. S. (1989). Use of constructed wetlands for treatment of environmental problems in mining: non-coal-mining applications. In D. A. Hammer (Ed.), Constructed wetlands for wastewater treatment (pp. 221–231). Ann Arbor: Lewis Publishers.

    Google Scholar 

  • Willow, M. A., & Cohen, R. R. H. (2003). pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. Journal of Environmental Quality, 32, 1212–1221.

    Article  CAS  Google Scholar 

  • Xu, Y., & Zhao, D. (2007). Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Research, 41, 2101–2108.

    Article  CAS  Google Scholar 

  • Younger, P. (2000). The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom. Mine Water and the Environment, 19, 84–97.

    Article  CAS  Google Scholar 

  • Ziemkiewicz, P. F., Skousen, J. G., & Simmons, J. (2003). Long-term performance of passive acid mine drainage treatment systems. Mine Water and the Environment, 22(3), 118–129.

    Article  CAS  Google Scholar 

  • Zipper, C. E., & Skousen, J. G. (2010). Influent water quality affects performance of passive treatment systems for acid mine drainage. Mine Water and the Environment, 29(2), 135–143.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by US Environmental Protection Agency, Region VIII, Denver, CO, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Cohen.

Additional information

This project was funded by U.S. Environmental Protection Agency, Region VIII, Denver, Colorado

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, R.R., Ozawa, T. Microbial Sulfate Reduction and Biogeochemistry of Arsenic and Chromium Oxyanions in Anaerobic Bioreactors. Water Air Soil Pollut 224, 1732 (2013). https://doi.org/10.1007/s11270-013-1732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1732-9

Keywords

Navigation