Skip to main content
Log in

Principles, Developments and Design Criteria of In Situ Chemical Oxidation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This paper provides a short overview of the main oxidation processes more commonly applied for the remediation of contaminated sites, with specific reference to their application for the in situ remediation of contaminated sites, i.e. In Situ Chemical Oxidation (ISCO). A review of the main patents issued on this topic shows the relevant contribution to the development of this technology in the last 20 years, especially in the USA. The still limited deployment of ISCO in other geographical areas may be improved by the increased acceptance of the technology that may come from the development of proper application guidelines based on accepted design criteria. The latter ones are also discussed in this paper with reference to the application of Fenton’s treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APAT (2005). Protocol for the application of in-situ chemical oxidation. Italian Agency for the Protetction of the Environment. (In Italian).

  • Baciocchi, R., Ciotti, C., Cleriti, G., Innocenti, I., & Nardella, A. (2010). Design of in-situ Fenton oxidation based on the integration of experimental and numerical modelling. Journal of Advanced Oxidation Technologies, 13(2), 153–163.

    CAS  Google Scholar 

  • Baciocchi, R., Boni, M. R., & D'Aprile, L. (2003). Hydrogen peroxide lifetime as an indicator of the efficiency of 3-chlorophenol Fenton's and Fenton-like oxidation in soils. Journal of Hazardous Materials, 96(2–3), 305–329.

    Article  CAS  Google Scholar 

  • Baciocchi, R., Boni, M. R., & D'Aprile, L. (2005). Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils. Journal of Hazardous Materials, 107(3), 97–102.

    Article  Google Scholar 

  • Block P.A., Brown R.A., Robinson D. (2004a). Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings of the 4th International Conference on the Remediation of Chlorinated and Recalcitrant Compounds.

  • Block, P.A., Brown, R.A. (2010). Oxidation of organic compounds. US Patent 7785038.

  • Block, P.A., Sethi, D.S., Brown, R.A., Robinson, D.S. (2004b) Oxidation of organic compounds. Patent WO2004/002923.

  • Boulos, N., Carvel, D., Mucssig, J. (2008). Ex-situ and in-situ remediation with activated persulfate. US Patent application 2008/0272063.

  • Brown, R.A., Norris, R.D. (1986). Method for decontaminating a permeable subterranean formation. US Patent 4591443.

  • Ciotti C. (2008). Advanced oxidation processes as innovative technologies for the remediation of contaminated sites. Ph.D. Thesis (XX cycle). University of Rome Tor Vergata.

  • Cooper, K, Crim, R.J., Carey, J., Bowers, J. (1999). In situ water and soil remediation method and system. US Patent 5967230.

  • Crimi, M., Quickem, M., & Ko, S. (2009). Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems. Journal of Contaminant Hydrology, 105, 69–79.

    Article  CAS  Google Scholar 

  • Damm, J. H., Hardacre, C., Kalin, R. M., & Walsh, K. P. (2002). Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate. Water Research, 36(14), 3638–3646.

    Article  CAS  Google Scholar 

  • De Souza e Silva, P. T., da Silva, V., de Barros Neto, B., & Simonnot, M.-O. (2009). Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils. Journal of Hazardous Materials, 168(2–3), 1269–1273.

    Article  Google Scholar 

  • Descourvières, C., Hartog, N., Patterson, B. M., Oldham, C., & Prommer, H. (2010). Geochemical controls on sediment reactivity and buffering processes in a heterogeneous aquifer. Applied Geochemistry, 25(2), 261–275.

    Article  Google Scholar 

  • Dugan, P.J., Siegrist, R.L., Crimi, M.L. (2010). Method and compositions for treatment of subsurface contaminants. US Patent application 2010/0003082.

  • Haselow, J. S., Siegrist, R. L., Crimi, M., & Jarosch, T. (2003). Estimating the total oxidant demand for in situ chemical oxidation design. Remediation Journal, 13(4), 5–16.

    Article  Google Scholar 

  • Hoag, G.E. and Collins, J. (2011). Soil remediation method and composition. US Patent 7976241.

  • Hoag, G.E., Chheda, V., Woody, B.A., Dobbs, G.M. (2000) Chemical oxidation of volatile organic compounds. US Patent 6019548.

  • Hoag, G.E., Collins, J.B., Varma, R.S., Nadagouda, M.N. (2011). Polymer coated nanoparticle activation of oxidants for remediation and methods of use hereof. US Patent 7963720.

  • Huang, K.-C., Couttenye, R. A., & Hoag, G. E. (2006). Kinetics of heat-assisted persulfate oxidation of methyl-tert-butyl ether (MtBE). Chemosphere, 49, 413–420.

    Article  Google Scholar 

  • Huling, S. G., Arnold, R. G., Sierka, R. A., & Miller, M. R. (2001). Influence of peat on Fenton oxidation. Water Research, 35(7), 1687–1694.

    Article  CAS  Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council). 2005. Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, 2nd ed. ISCO-2. Washington, D.C.: Interstate Technology & Regulatory Council, In Situ Chemical xidation Team. Available on the Internet at http://www.itrcweb.org.

  • Kiwi, J., Lopez, A., & Nadtochenko, V. (2000). Mechanism and kinetics of the OH-radical intervention during fenton oxidation in the presence of a significant amount of radical scavenger (Cl-). Environmental Science and Technology, 34, 2162–2168.

    Article  CAS  Google Scholar 

  • Kong, S. H., Watts, R. J., & Choi, J. H. (1998). Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere, 37(8), 1473–1482.

    Article  CAS  Google Scholar 

  • Kukor, J.J., Nam, K. (2004). Remediation of contaminates including low bioavailability hydrocarbons. US Patent 6746180.

  • Kwan, W. P., & Voelker, B. M. (2002). Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environmental Science and Technology, 36, 1467–1476.

    Article  CAS  Google Scholar 

  • Land, C.A., Pezzullo, J.A., Malot, J.J., Papa, L.C., Oberle, D. (1997). Process for soil decontamination by oxidation and vacuum extraction. US Patent 5615974.

  • Lee, E. S., Seol, Y., Fang, Y. C., & Schwartz, F. W. (2003). Destruction efficiencies and dynamics of reaction fronts associated with permanganate oxidation of trichloroethylene. Environmental Science and Technology, 37, 2540–2546.

    Article  CAS  Google Scholar 

  • Lessard, L.H. (2005). Method for the remediation of contaminated soil and/or groundwater via integrated chemical and biological treatment. US Patent 6923596.

  • Liang, C., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004a). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55, 1213–1223.

    Article  CAS  Google Scholar 

  • Liang, C., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004b). Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion”. Chemosphere, 55, 1225–1233.

    Article  CAS  Google Scholar 

  • Liang, C., & Lee, I. (2008). In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination—a proof of concept study. Journal of Contaminant Hydrology, 100(3–4), 91–100.

    Article  CAS  Google Scholar 

  • Liang, C., Huang, C. F., & Chen, Y.-J. (2008a). Potential for activated persulfate degradation of BTEX contamination. Water Research, 42(15), 4091–4100.

    Article  CAS  Google Scholar 

  • Liang, C., Lee, I., Hsu, I.-Y., Liang, C.-P., & Lin, Y.-L. (2008b). Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere, 70(3), 426–435.

    Article  CAS  Google Scholar 

  • Lundy, W.L. (2005). In situ subsurface decontamination method. US Patent 6843618.

  • O’Mahony, M. M., Dobson, A. D. W., Barnes, J. D., & Singleton, I. (2006). The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere, 63(2), 307–314.

    Article  Google Scholar 

  • Rivas, J., Gimeno, O., de la Calle, R. G., & Beltràn, F. J. (2009). Ozone treatment of PAH contaminated soils: operating variables effect. Journal of Hazardous Materials, 169(1–3), 509–515.

    Article  CAS  Google Scholar 

  • Sethi, D.S., Sessa, F.C., Kinsman, L.J., Block, P.A. (2005). Treatment of environmental contaminants. Patent WO 2005/012181.

  • Shiau, B.J. (2008). In-situ surfactant and chemical oxidant flushing for complete remediation of contaminants and methods of using same. US Patent 7364386.

  • Siegrist, R.L., Murdoch, L.C. (2000). Oxidative particle mixtures for groundwater treatment. US Patent 6102621.

  • Silva, P. T. D. E., da Silva, V. L., Neto, B. D., & Simmonnot, M. O. (2010). Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils. Journal of Hazardous Materials, 168(2–3), 1269–1273.

    Google Scholar 

  • Smith, B. A., Teel, A. L., & Watts, R. J. (2006). Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent. Journal of Contaminant Hydrology, 85(3–4), 229–246.

    Article  CAS  Google Scholar 

  • Teel, A. L., & Watts, R. J. (2002). Degradation of carbon tetrachloride by modified Fenton's reagent. Journal of Hazardous Materials, 94(2), 179–189.

    Article  CAS  Google Scholar 

  • Vicente, F., Rosas, J. M., Santos, A., & Romero, A. (2011). Improvement soil remediation by using stabilizers and chelating agents in a Fenton-like process. Chemical Engineering Journal, 172, 689–697.

    Article  CAS  Google Scholar 

  • Vigneri, R.J. (1994). Method and system for remediation of groundwater contamination. US Patent 5286141.

  • Vigneri, R.J. (1996). Method and system for remediation of groundwater contamination. US Patent 5520483.

  • Watts, R. J., & Stanton, P. C. (1999). Mineralization of sorbed and NAPL-phase hexadecane by catalyzed hydrogen peroxide. Water Research, 33(6), 1405–1414.

    Article  CAS  Google Scholar 

  • Watts, R. J., & Teel, A. (2005). Chemistry of modified Fenton's reagent (catalyzed H2O2 propagations–CHP) for in situ soil and groundwater remediation. Journal of Environmental Engineering, 131(4), 612–622.

    Article  CAS  Google Scholar 

  • Watts, R.J., Greenberg, R.S. (1998). Soil and/or groundwater remediation process. US Patent 5741427.

  • Watts, R. J., Stanton, P. C., Howsawkeng, J., & Teel, A. L. (2002). Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Research, 36(17), 4283–4292.

    Article  CAS  Google Scholar 

  • Whisman III, C.B. (2007). Methods and system for groundwater remediation. US Patent 7157770.

  • Wilson, J.T. (1996). Remediation apparatus and method for organic contamination in soil and groundwater. US Patent 5525008.

  • Woo, N. C., Hyun, S. G., Park, W. W., Lee, E. S., & Schwartz, F. W. (2010). Characteristics of permanganate oxidation of TCE at low reagent concentrations. Environmental Technology, 30(13), 1337–1342.

    Article  Google Scholar 

  • Yu, D. Y., Kang, N., Bae, W., & Banks, M. K. (2007). Characteristics in oxidative degradation by ozone for saturated hydrocarbons in soil contaminated with diesel fuel. Chemosphere, 66(5), 799–807.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Baciocchi.

Additional information

Guest Editors: R Naidu, Euan Smith, MH Wong, Megharaj Mallavarapu, Nanthi Bolan, Albert Juhasz, and Enzo Lombi

This article is part of the Topical Collection on Remediation of Site Contamination

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baciocchi, R. Principles, Developments and Design Criteria of In Situ Chemical Oxidation. Water Air Soil Pollut 224, 1717 (2013). https://doi.org/10.1007/s11270-013-1717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1717-8

Keywords

Navigation