Skip to main content

IN SITU Chemical Oxidation

  • Chapter
  • First Online:
Chlorinated Solvent Source Zone Remediation

Part of the book series: SERDP ESTCP Environmental Remediation Technology ((SERDP/ESTCP,volume 7))

Abstract

This chapter presents a technology description of in situ chemical oxidation (ISCO) and discusses the key concepts associated with its use for remediation of chlorinated solvent dense nonaqueous phase liquid (DNAPL) source zones. A variety of oxidants are discussed including hydrogen peroxide, potassium permanganate, sodium persulfate and ozone. Current practices along with remedial design issues and approaches for application of ISCO to DNAPL source zones are described, including monitoring and optimization strategies. This chapter concludes with a discussion of emerging approaches and technologies, and a discussion of research needs and breakthrough areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.serdp.org/Featured-Initiatives/Cleanup-Initiatives/DNAPL-Source-Zones, January 24, 2014

REFERENCES

  • Adam ML, Comfort SD, Morley MC, Snow DD. 2004. Remediating RDX-contaminated ground water with permanganate: Laboratory investigations for the Pantex perched aquifer. J Environ Qual 33:2165–2173.

    CAS  Google Scholar 

  • Aiken G. 1992. Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method. Environ Sci Technol 26:2435–2439.

    CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD. 2004. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712.

    CAS  Google Scholar 

  • Appelo CAJ, Postma D. 1999. Geochemistry, Groundwater and Pollution. A.A. Balkema Publishers, Leiden, The Netherlands.

    Google Scholar 

  • ASTM (American Society for Testing Materials). 2004. Standard Guide for Accelerated Site Characterization for Confirmed or Suspected Petroleum Releases. E1912-98. ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  • ASTM. 2007. Standard Test Method for Estimating the Permanganate Natural Oxidant Demand of Soil and Aquifer Solids. D7262-07. ASTM International, West Conshohocken, PA, USA. 5 p.

    Google Scholar 

  • Ball WP, Liu C, Xia G, Young DF. 1997. A diffusion-based interpretation of tetrachloroethene and trichloroethene concentration profiles in a groundwater aquitard. Water Resour Res 33:2741–2757.

    CAS  Google Scholar 

  • Barbeni M, Nfinero C, Pelizzetti E, Borgarello E, Serpon N. 1987. Chemical degradation of chlorophenols with Fenton’s reagent. Chemosphere 16:2225–2237.

    CAS  Google Scholar 

  • Bellamy WD, Hickman PA, Ziemba N. 1991. Treatment of VOC-contaminated groundwater by hydrogen peroxide and ozone oxidation. J Water Pollut Control Fed 63:120–128.

    CAS  Google Scholar 

  • Bissey LL, Smith JL, Watts RJ. 2006. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton’s reagent). Water Res 40:2477–2484.

    CAS  Google Scholar 

  • Block PA, Brown RA, Robinson D. 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. Proceedings, Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA, May 24–27, Paper 2A-05.

    Google Scholar 

  • Borden RC, Cha KY, Simpkin T, Lieberman MT. 2012. Development of a Design Tool for Planning Aqueous Amendment Injection Systems Soluble Substrate Design Tool. Final Report and User's Guide, ESTCP Project ER-200626. June. 40 p. http://www.serdp.org/. Accessed January 25, 2014.

  • Bowers AR, Gaddipati P, Eckenfelder WW, Monsen RM. 1989. Treatment of toxic or refractory wastewaters with hydrogen peroxide. Water Sci Technol 21:477–486.

    CAS  Google Scholar 

  • Braida WJ, Ong SK. 2001. Air sparging effectiveness: Laboratory characteristics of air-channel mass transfer zone for VOC volatilization. J Hazard Mater 87:241–258.

    CAS  Google Scholar 

  • Brown RA, Norris RD. 1986. Method for Decontaminating a Permeable Subterranean Formation. U.S. Patent 4,591,443. U.S. Patent Office, Washington, DC, USA.

    Google Scholar 

  • Brown RA, Robinson D. 2004. Response to naturally occurring organic material: Permanganate versus persulfate. In Gavaskar AR, Chen ASC, eds, Remediation of Chlorinated and Recalcitrant Compounds, Proceedings, Fourth International Conference, Monterey, USA, Battelle Press, Columbus, OH, USA, May 24–27.

    Google Scholar 

  • Brown RA, Norris RD, Westray M. 1986. In situ treatment of groundwater. Presented at Haz Pro ’86, Baltimore, MD, USA, April 1–3.

    Google Scholar 

  • Brown RA, Skaladany G, Robinson D, Fiacco RJ. 2001. Comparing permanganate and persulfate treatment effectiveness for various organic contaminants. Proceedings, The First International Conference on Oxidation and Reduction Technologies for In-Situ Treatment of Soil and Groundwater, Niagara Falls, Ontario, Canada, June 25–29.

    Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB. 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OHâ‹…/O⋅−) in aqueous solution. J Phys Chem Ref Data 17:513–886.

    CAS  Google Scholar 

  • Chapelle FH, Bradley PM, Casey CC. 2005. Behavior of a chlorinated ethene plume following source-area treatment with Fenton’s reagent. Ground Water Monit Remediat 25:131–141.

    CAS  Google Scholar 

  • Choi H, Lim H-N, Hwang T-M, Kang J-W. 2002. Transport characteristics of gas phase ozone in unsaturated porous media for in-situ chemical oxidation. J Contam Hydrol 57:81–98.

    CAS  Google Scholar 

  • Christiansen CM. 2010. Methods for Enhanced Delivery of In Situ Remediation Amendments in Contaminated Clay Till. PhD Thesis. Technical University of Denmark, Kgs. Lyngby, Denmark.

    Google Scholar 

  • Christensen KE. 2011. Evaluating Dense Non-aqueous Phase Liquid Dissolution Kinetics and Chemical Oxidation in a Three-dimensional Bench-scale Fracture Network. PhD Thesis. Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Christiansen CM, Damgaard I, Broholm MM, Kessler T, Klint KE, Nilsson B, Bjerg PL. 2010. Comparison of delivery methods for enhanced in situ remediation in clay till. Ground Water Monit Remediat 30:107–122.

    Google Scholar 

  • Clement TP. 1997. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-D Groundwater Systems. PNNL-11720. Pacific Northwest National Laboratory, Richland, WA, USA, 59 pp.

    Google Scholar 

  • Clement TP. 2001. Generalized solution to multispecies transport equations coupled with a first-order reaction network. Water Resour Res 37:157–163.

    Google Scholar 

  • Clement TP, Johnson CD. 2002. What’s New in RT3D Version 2.5. Pacific Northwest National Laboratory, Richland, WA. 20 p. http://www.eng.auburn.edu/~clemept/Computer_codes/RT3Dv25_Update.pdf. Accessed January 25, 2014.

  • Clement TP, Sun Y, Hooker BS, Petersen JN. 1998. Modeling multispecies reactive transport in ground water. Ground Water Monit Remediat 18:79–82.

    CAS  Google Scholar 

  • Clement TP, Johnson CD, Sun Y, Klecka GM, Bartlett C. 2000. Natural attenuation of chlorinated solvent compounds: Model development and field-scale application. J Contam Hydrol 42:113–140.

    CAS  Google Scholar 

  • Conrad SH, Glass RJ, Peplinski WJ. 2002. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: Surfactant floods and in situ oxidation using permanganate. J Contam Hydrol 58:13–49.

    CAS  Google Scholar 

  • Corbin JF III, Teel AL, Allen-King RM, Watts RJ. 2007. Reactive oxygen species responsible for the enhanced desorption of dodecane in modified Fenton’s systems. Water Environ Res 79:37–42.

    CAS  Google Scholar 

  • Crawford S, Smith BA, O’Shaughnessy K, Hagelin N, Jacobson R. 2009. Application of alkaline activated persulfate and evaluation of treatment residuals. Conference on Design and Construction Issues at Hazardous Waste Sites, Philadelphia, PA, USA.

    Google Scholar 

  • Crimi M, Ko S. 2009. Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate. Chemosphere 74:847–853.

    CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2003. Geochemical effects associated with permanganate oxidation of DNAPLs. Ground Water 41:458–469.

    CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2004a. Association of cadmium with MnO2 particles generated during permanganate oxidation. Water Res 38:887–894.

    CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2004b. Impact of reaction conditions on MnO2 genesis during permanganate oxidation. J Environ Eng 130:562–572.

    CAS  Google Scholar 

  • Crimi ML, Siegrist RL. 2005. Factors affecting effectiveness and efficiency of DNAPL destruction using potassium permanganate and catalyzed hydrogen peroxide. J Environ Eng 131:1716–1723.

    Google Scholar 

  • Crimi ML, Taylor J. 2007. Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil Sediment Contam 16:29–45.

    CAS  Google Scholar 

  • Crimi M, Quickel M, Ko S. 2009. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: Evaluation in 1-D transport systems. J Contam Hydrol 105:69–79.

    CAS  Google Scholar 

  • Crimi M, Silva JAK, Palaia T. 2011. Cooperative Technology Demonstration: Polymer-Enhanced Subsurface Delivery and Distribution of Permanganate. ESTCP Project ER-0912. http://www.serdp.org/. Accessed November 2, 2012.

  • Cross PE, Baird D. 2008. Initial Results of ISCO for a Large TCE DNAPL Source Area. Presentation at the Sixth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2008). In Sass BM (Conference Chair), Remediation of Chlorinated and Recalcitrant Compounds – 2008. ISBN 1-57477-163-9, Battelle Press, Columbus, OH, USA, Abstract C-018.

    Google Scholar 

  • Cross PE, Baird D, Wymore R. 2006. Modified Fenton’s Reagent Remediation of a Large TCE Source Zone. Presentation at the Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2006). In Sass BM (Conference Chair), Remediation of Chlorinated and Recalcitrant Compounds – 2006. ISBN 1-57477-157-4, Battelle Press, Columbus, OH, USA, Abstract D-68.

    Google Scholar 

  • Crumbling DM, Groenjes C, Lesnik B, Lynch K, Shockley J, VanEe J, Howe R, Keith L, McKenna G. 2001. Applying the concept of effective data to contaminated sites could reduce costs and improve cleanups. Environ Sci Technol 35:405A-409A.

    Google Scholar 

  • Crumbling DM, Griffith J, Powell DM. 2003. Improving decision quality: Making the case for adopting next-generation site characterization practices. Remediat 13:91–111.

    Google Scholar 

  • Dugan P. 2006. Coupling In Situ Technologies for DNAPL Remediation and Viability of the PITT for Post-Remediation Performance Assessment. PhD Thesis. Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Dugan PJ, Vlastnik E, Ivy S, Swearingen L, Swearingen J. 2009. Micro-encapsulated oxidant technology: Enhancing in situ chemical oxidation (ISCO) with selective oxidation using controlled-release permanganate. Proceedings, Annual Conference on Soils, Sediments, Water, and Energy, Amherst, MA, USA, October 19–22. http://www.umasssoils.com/posters2009/chem_ox.htm. Accessed November 2, 2012.

  • Dugan PJ, Siegrist RL, Crimi M. 2010. Coupling surfactants/cosolvents with oxidants for enhanced DNAPL removal: A review. Remediat J 20:27–50.

    Google Scholar 

  • ESTCP (Environmental Security Technology Certification Program). 1999. Technology Status Review: In Situ Oxidation. ESTCP, Arlington, VA, USA. 50 p. http://www.serdp.org/. Accessed June 25, 2012.

  • Forsey SP, Thomson NR, Barker JF. 2010. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere 79:628–636.

    CAS  Google Scholar 

  • Furman O, Teel AL, Watts RJ. 2010. Mechanism of base activation of persulfate. Environ Sci Technol 44:6423–6428.

    CAS  Google Scholar 

  • Gates DD, Siegrist RL. 1993. Laboratory Evaluation of Chemical Oxidation Using Hydrogen Peroxide. Report from The X-231B Project for In Situ Treatment by Physicochemical Processes Coupled with Soil Mixing, ORNL/TM-12259. Oak Ridge National Laboratory, Oak Ridge, TN, USA.

    Google Scholar 

  • Gates DD, Siegrist RL. 1995. In situ chemical oxidation of trichloroethylene using hydrogen peroxide. J Environ Eng 121:639–644.

    CAS  Google Scholar 

  • Gates DD, Siegrist RL, Cline SR. 1995. Chemical Oxidation of Contaminants in Clay or Sandy Soil. Proceedings, American Society of Civil Engineering (ASCE) National Conference on Environmental Engineering, Pittsburgh, PA, USA, July 1995.

    Google Scholar 

  • Gates-Anderson DD, Siegrist RL, Cline SR. 2001. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. J Environ Eng 127:337–347.

    CAS  Google Scholar 

  • Glaze WH, Kang JW. 1988. Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: Laboratory studies. J Am Water Works Assoc 5:57–63.

    Google Scholar 

  • Harbaugh AW, McDonald MG. 1996a. User’s Documentation for MODFLOW-96: An Update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model. Open-File Report 96-485. U.S. Geological Survey, Reston, VA, USA. 56 p.

    Google Scholar 

  • Harbaugh AW, McDonald MG. 1996b. Programmer’s Documentation for MODFLOW-96: An Update to the U.S. Geological Survey Modular Finite-Difference Ground-Water Flow Model. Open-File Report 96-485. U.S. Geological Survey, Reston, VA, USA, 56 p.

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG. 2000. MODFLOW-2000: The U.S. Geological Survey Modular Ground-Water Model – User Guide to Modularization Concepts and the Ground-Water Flow Process Model. Open-File Report 00-92. U.S. Geological Survey, Reston, VA, USA, 130 p.

    Google Scholar 

  • Haselow JS, Siegrist RL, Crimi ML, Jarosch T. 2003. Estimating the total oxidant demand for in situ chemical oxidation design. Remediat J 13:5–15.

    Google Scholar 

  • Heiderscheidt JL. 2005. DNAPL Source Zone Depletion During In Situ Chemical Oxidation (ISCO): Experimental and Modeling Studies. PhD Thesis. Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Heiderscheidt JL, Siegrist RL, Illangasekare TH. 2008a. Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones. J Contam Hydrol 102:3–16.

    CAS  Google Scholar 

  • Heiderscheidt JL, Crimi ML, Siegrist RL, Singletary M. 2008b. Optimization of full-scale permanganate ISCO system operation: Laboratory and numerical studies. Ground Water Monit Remediat 28:72–84.

    CAS  Google Scholar 

  • Held RJ, Illangasekare TH. 1995a. Fingering of dense non-aqueous phase liquids in porous media: 1. Experimental investigation. Water Resour Res 31:1213–1222.

    CAS  Google Scholar 

  • Held RJ, Illangasekare TH. 1995b. Fingering of dense non-aqueous phase liquids in porous media: 2. Analysis and classification. Water Resour Res 31:1223–1231.

    CAS  Google Scholar 

  • Henderson TH, Mayer KU, Parker BL, Al TA. 2009. Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J Contam Hydrol 106:195–211.

    CAS  Google Scholar 

  • Hønning J, Broholm M, Bjerg P. 2007. Role of diffusion in chemical oxidation of PCE in a dual permeability system. Environ Sci Technol 41:8426–8432.

    Google Scholar 

  • House DA. 1962. Kinetic and mechanisms of oxidations by peroxydisulfate. Chem Rev 62:185–203.

    CAS  Google Scholar 

  • Huang KC, Couttenye RA, Hoag GE. 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49:413–420.

    CAS  Google Scholar 

  • Huie RE, Clifton CL, Neta P. 1991. Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. International Journal of Radiation Applications and Instrumentation, Part C: Radiat Phys Chem 38:477–481.

    CAS  Google Scholar 

  • Huling SG, Pivetz BE. 2006. Engineering issue paper: In-situ chemical oxidation. EPA 600-R-06-072. U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Cincinnati, OH, USA. 60 p. http://www.epa.gov/tio/tsp/issue.htm#EF. Accessed November 3, 2012.

  • Huling SG, Ko S, Pivetz B. 2011. Groundwater sampling at ISCO sites: Binary mixtures of volatile organic compounds and persulfate. Ground Water Monit Remediat 31:72–79.

    CAS  Google Scholar 

  • Illangasekare TH, Armbruster EJ III, Yates DN. 1995a. Non-aqueous-phase fluids in heterogeneous aquifer: Experimental study. J Environ Eng 121:571–579.

    CAS  Google Scholar 

  • Illangasekare TH, Ramsey JL, Jensen KH, Butts M. 1995b. Experimental study of movement and distribution of dense organic contaminants in heterogeneous aquifers. J Contam Hydrol 20:1–25.

    CAS  Google Scholar 

  • Illangasekare TH, Munakata Marr J, Siegrist RL, Soga K, Glover KC, Moreno-Barbero E, Heiderscheidt JL, Saenton S, Matthew M, Kaplan AR, Kim Y, Dai D, Gago JL, Page JWE. 2006. Mass Transfer from Entrapped DNAPL Sources Undergoing Remediation: Characterization Methods and Prediction Tools. CU-1294. ER 1294. Final Report. Strategic Environmental Research and Development Program (SERDP), Arlington, VA, USA. 435 p. http://www.serdp.org/. Accessed November 2, 2012.

  • ITRC (Interstate Technology & Regulatory Council). 2001. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater (ISCO-1). Washington, DC, USA. http://www.itrcweb.org/guidancedocument.asp?TID=13. Accessed November 2, 2012.

  • ITRC. 2003. Technology and Regulatory Guidance for the Triad Approach: A New Paradigm for Environmental Project Management. SCM-1, December. ITRC, Washington, DC, USA. http://www.itrcweb.org/guidance/getdocument?documentid=90. Accessed June 19, 2013.

  • ITRC. 2005. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, 2nd ed (ISCO-2). Prepared by the ITRC In Situ Chemical Oxidation Team. http://www.itrcweb.org/guidancedocument.asp?TID=13. Accessed December 6, 2009.

  • ITRC. 2007. Triad Implementation Guide. SCM-3. ITRC Sampling, Characterization, and Monitoring Team, Washington, DC, USA. http://www.itrcweb.org. Accessed November 2, 2012.

  • Johnson CD, Truex MJ, Clement TP. 2006. Natural and Enhanced Attenuation of Chlorinated Solvents Using RT3D. PNNL-15937. Pacific Northwest National Laboratory, Richland, WA, USA.

    Google Scholar 

  • Johnson RL, Pankow JF. 1992. Dissolution of dense chlorinated solvents into groundwater. 2. Source functions for pools of solvent. Environ Sci Technol 26:896–901.

    CAS  Google Scholar 

  • Johnson RL, Tratnyek PG, O’Brien Johnson R. 2008. Persulfate persistent under thermal activation conditions. Environ Sci Technol 42:9350–9356.

    CAS  Google Scholar 

  • Jones LJ. 2007. The Impact of NOD Reaction Kinetics on Treatment Efficiency. MS Thesis. University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  • Jones PW, Williams DR. 2002. Chemical speciation simulation used to assess the efficiency of environment-friendly EDTA alternative for use in pulp and paper industry. Inorg Chim Acta 339:41–50.

    CAS  Google Scholar 

  • Jung H, Kim J, Choi H. 2004. Reaction kinetics of ozone in variably saturated porous media. J Environ Eng 130:432–441.

    CAS  Google Scholar 

  • Jung H, Ahn Y, Choi H, Kim IS. 2005. Effects of in-situ ozonation on indigenous microorganisms in diesel contaminated soil: Survival and regrowth. Chemosphere 61:923–932.

    CAS  Google Scholar 

  • Kakarla PKC, Watts RJ. 1997. Depth of Fenton-like oxidation in remediation of surface soils. J Environ Eng 123:11–17.

    CAS  Google Scholar 

  • Kim J, Choi H. 2002. Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils. J Contam Hydrol 55:261–285.

    CAS  Google Scholar 

  • Kim K, Gurol MD. 2005. Reaction of nonaqueous phase TCE with permanganate. Environ Sci Technol 39:9303–9308.

    CAS  Google Scholar 

  • Kolthoff IM, Miller IK. 1951. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73:3055–3059.

    CAS  Google Scholar 

  • Krembs FJ. 2008. Critical Analysis of the Field Scale Application of In Situ Chemical Oxidation for the Remediation of Contaminated Groundwater. MS Thesis. Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Krembs FJ, Siegrist RL, Crimi M, Furrer RF, Petri BG. 2010. ISCO for groundwater remediation: Analysis of field applications and performance. Ground Water Monit Remediat 30:42–53.

    Google Scholar 

  • Kueper BH, Frind EO. 1991a. Two-phase flow in heterogeneous porous media. 1. Model development. Water Resour Res 27:1049–1057.

    Google Scholar 

  • Kueper BH, Frind EO. 1991b. Two-phase flow in heterogeneous porous media. 2. Model application. Water Resour Res 27:1059–1070.

    Google Scholar 

  • Kueper BH, Abbot W, Farquhar G. 1989. Experimental observations of multiphase flow in heterogeneous porous media. J Contam Hydrol 5:83–95.

    CAS  Google Scholar 

  • Kueper BH, Redman D, Starr RC, Reitsma S, Mah M. 1993. A field experiment to study the behavior of tetrachloroethylene below the water table: Spatial distribution of residual and pooled DNAPL. Ground Water 31:756–766.

    CAS  Google Scholar 

  • Lee BS, Kim JH, Lee KC, Kim YB, Schwartz FW, Lee ES, Woo NC, Lee MK. 2009. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: A large flow-tank study. Chemosphere 74:745–750.

    CAS  Google Scholar 

  • Lee ES, Schwartz FW. 2007. Characteristics and applications of controlled-release KMnO4 for groundwater remediation. Chemosphere 66:2058–2066.

    CAS  Google Scholar 

  • Lee ES, Seol Y, Fang YC, Schwartz FW. 2003. Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene. Environ Sci Technol 37:2540–2546.

    CAS  Google Scholar 

  • Li XD, Schwartz FW. 2003. Permanganate Oxidation Schemes for the Remediation of Source Zone DNAPLs and Dissolved Contaminant Plumes. In Henry SM, Warner SD, eds, Chlorinated Solvent and DNAPL Remediation. American Chemical Society, Washington, DC, USA, pp 73–85.

    Google Scholar 

  • Li XD, Schwartz FW. 2004. DNAPL mass transfer and permeability reduction during in situ chemical oxidation with permanganate. Geophys Res Lett 31:L06504, doi:10.1029/2003GL019218.

    Google Scholar 

  • Liang C, Lee IL. 2008. In situ iron activated persulfate oxidative fluid sparging treatment of TCE contamination: A proof of concept study. J Contam Hydrol 100:91–100.

    CAS  Google Scholar 

  • Liang C, Bruell CJ, Marley MC, Sperry KL. 2004a. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere 55:1213–1223.

    CAS  Google Scholar 

  • Liang C, Bruell CJ, Marley MC, Sperry KL. 2004b. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55:1225–1233.

    CAS  Google Scholar 

  • Liang C, Wang Z S, Mohanty N. 2006. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 C. Sci Total Environ 370:271–277.

    CAS  Google Scholar 

  • Liang C, Huang CF, Mohanty N, Lu CJ, Kurakalva RM. 2007. Hydroxypropyl-β-cyclodextrin-mediated iron-activated persulfate oxidation of trichloroethylene and tetrachloroethylene. Ind Eng Res 46:6466–6479.

    CAS  Google Scholar 

  • Liang C, Lee I-L, Hsu I-Y, Liang C-P, Lin Y-L. 2008. Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere 70:426–435.

    CAS  Google Scholar 

  • Liu C, Ball WP. 2002. Back diffusion of chlorinated solvent contaminants from a natural aquitard to a remediated aquifer under well-controlled field conditions: Predictions and measurements. Ground Water 40:175–184.

    CAS  Google Scholar 

  • Lowe KS, Gardner FG, Siegrist RL. 2002. Field pilot test of in situ chemical oxidation through recirculation using vertical wells. Ground Water Monit Remediat 22:106–115.

    CAS  Google Scholar 

  • Mackay DM, Cherry JA. 1989. Ground water contamination: Limits of pump-and-treat remediation. Environ Sci Technol 23:630–636.

    CAS  Google Scholar 

  • MacKinnon LK, Thomson NR. 2002. Laboratory-scale in situ chemical oxidation of a perchloroethylene pool using permanganate. J Contam Hydrol 56:49–74.

    CAS  Google Scholar 

  • Marvin BK, Nelson CH, Clayton W, Sullivan KM, Skladany G. 1998. In Situ Chemical Oxidation of Pentachlorophenol and Polycyclic Aromatic Hydrocarbons: From Laboratory Tests to Field Demonstration. In Wickramanayake GB, Hinchee RE, eds, Physical, Chemical, and Thermal Technologies: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 383–388.

    Google Scholar 

  • McDade JM, McGuire TM, Newell CJ. 2005. Analysis of DNAPL source-depletion costs at 36 field sites. Remediat J 15:9–18.

    Google Scholar 

  • McDonald MG, Harbaugh AW. 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. Techniques of Water-Resources Investigations, Book 6, Chapter A1. U.S. Geological Survey, Reston, VA, USA, 586 p.

    Google Scholar 

  • Monahan MJ, Teel AL, Watts RJ. 2005. Displacement of five metals sorbed on kaolinite during treatment with modified Fenton's reagent. Water Res 39:2955–2963.

    CAS  Google Scholar 

  • Morgan JJ, Stumm W. 1963. Colloid-chemical properties of manganese dioxide. J Coll Sci 19:347–359.

    Google Scholar 

  • Mumford KG, Lamarche CS, Thomson NR. 2004. Natural oxidant demand of aquifer materials using the push-pull technique. J Environ Eng 130:1139–1146.

    CAS  Google Scholar 

  • Mumford KG, Thomson NR, Allen-King RM. 2005. Bench-scale investigation of permanganate natural oxidant demand kinetics. Environ Sci Technol 39:2835–2840.

    CAS  Google Scholar 

  • NAVFAC (Naval Facilities Engineering Service Center). 2000. Site 11, Old Camden County Landfill Remedial Action Operation: NSB Kings Bay, GA. Remedial Action Operation Optimization Summary Report. NFESC, Port Hueneme, CA, USA, 8 p.

    Google Scholar 

  • Ndjou’ou A-C, Cassidy D. 2006. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil. Chemosphere 65:1610–1615.

    Google Scholar 

  • Nelson MD. 1999. The Geochemical Reactions and Density Effects Resulting from the Injection of KMnO4 for PCE DNAPL Oxidation in a Sandy Aquifer. MSc Thesis. University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Nelson CH, Brown RA. 1994. Adapting ozonation for soil and ground water cleanup. Chem Eng 11:EE18-EE22.

    Google Scholar 

  • NRC. 2005. Contaminants in the Subsurface: Source Zone Assessment and Remediation. National Academies Press, Washington, DC, USA. 372 p.

    Google Scholar 

  • Osgerby IT, Smith BA, Crawford SC, Sperry K, Boeckeler AJ, Getchell SA, McGrath D, Acone SE, Hathaway E. 2006. Case Study: History of a Successful ISCO Project: Eastland Woolen Mills Superfund Site (Corinna, Maine). Proceedings, The 5th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA.

    Google Scholar 

  • Oesterreich RC, Siegrist RL. 2009. Quantifying volatile organic compounds in porous media: Effects of sampling method attributes, contaminant characteristics and environmental conditions. Env Sci Technol 43:2891–2898.

    CAS  Google Scholar 

  • Perez-Benito JF, Arias C. 1991. Occurrence of colloidal manganese dioxide in permanganate reactions. J Colloid Interface Sci 152:70–84.

    Google Scholar 

  • Petri BG. 2006. Impacts of Subsurface Permanganate Delivery Parameters on Dense Nonaqueous Phase Liquid Mass Depletion Rates. MS Thesis, Environmental Science and Engineering Division, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Petri B, Siegrist RL, Crimi ML. 2008. Effects of groundwater velocity and permanganate concentration on DNAPL mass depletion rates during in situ oxidation. J Environ Eng 134:1–13.

    CAS  Google Scholar 

  • Pinder GF, Abriola LM, 1986. On the simulation of non-aqueous phase organic compounds in the subsurface. Water Resour Res 22:109S-119S.

    Google Scholar 

  • Poulsen MM, Kueper BH. 1992. A field experiment to study the behavior of tetrachloroethylene in unsaturated porous media. Environ Sci Technol 26:889–895.

    CAS  Google Scholar 

  • Qiu Y, Kuo CH, Zappi ME, Fleming EC. 2004. Ozonation of 2,6- 3,4- and 3,5-dichlorophenol isomers within aqueous solutions. J Environ Eng 130:408–416.

    CAS  Google Scholar 

  • Ramo J. 2003. Hydrogen Peroxide-Metals-Chelating Agents: Interactions and Analytical Techniques. Oulu University Press, Oulu, Finland.

    Google Scholar 

  • Ravikumur JX, Gurol M. 1994. Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environ Sci Technol 28:394–400.

    Google Scholar 

  • Reitsma S, Marshall M. 2000. Experimental Study of Oxidation of Pooled NAPL. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 25–32.

    Google Scholar 

  • Ross C, Murdoch LC, Freedman DL, Siegrist RL. 2005. Characteristics of potassium permanganate encapsulated in polymer. J Environ Eng 131:1203–1211.

    CAS  Google Scholar 

  • Sahl J. 2005. Coupling In Situ Chemical Oxidation (ISCO) with Bioremediation Processes in the Treatment of Dense Non-Aqueous Phase Liquids (DNAPLs). MS Thesis, Environmental Science and Engineering Division, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Sahl J, Munakata-Marr J. 2006. The effects of in situ chemical oxidation on microbial processes: A review. Remediat J 16:57–70.

    Google Scholar 

  • Sahl JW, Munakata-Marr J, Crimi ML, Siegrist RL. 2007. Coupling permanganate oxidation with microbial dechlorination of tetrachloroethene. Water Environ Res 79:5–12.

    CAS  Google Scholar 

  • Sale T, Illangasekare T, Zimbron J, Rodriguez D, Wilking B, Marinelli F. 2007. AFCEE Source Zone Initiative. Final Report. Submitted to Air Force Center for Engineering and the Environment, Brooks City-Base, TX, USA.

    Google Scholar 

  • Schincariol RA, Schwartz FW. 1990. An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media. Water Resour Res 26:2317–2329.

    Google Scholar 

  • Schmidt JT, Ahmad M, Teel AL, Watts RJ. 2011. Hydrogen peroxide stabilization in one-dimensional flow columns. J Contam Hydrol 126:1–7.

    CAS  Google Scholar 

  • Schnarr MJ, Truax CL, Farquhar GJ, Hood ED, Gonullu T, Stickney B. 1998. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. J Contam Hydrol 29:205–224.

    CAS  Google Scholar 

  • Schroth MH, Oostrom M. Wietsma TW, Istok JD. 2001. In-situ oxidation of trichloroethene by permanganate: Effects on porous medium hydraulic properties. J Contam Hydrol 44:185–201.

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM. 1993. Environmental Organic Chemistry. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Schwille F. 1988. Dense Chlorinated Solvents in Porous and Fractured Media. Translated by JF Pankow. Lewis Publishers, Chelsea, MI, USA. 146 p.

    Google Scholar 

  • Shin W-T, Garanzuay X, Yiacoumi S, Tsouris C, Gu B, Mahinthakumar G. 2004. Kinetics of soil ozonation: An experimental and numerical investigation. J Contam Hydrol 72:227–243.

    CAS  Google Scholar 

  • Siegrist RL, Lowe KS, Murdoch LD, Slack WW, Houk TC. 1998a. X-231A Demonstration of In Situ Remediation of DNAPL Compounds in Low Permeability Media by Soil Fracturing with Thermally Enhanced Mass Recovery or Reactive Barrier Destruction. Oak Ridge National Laboratory Report ORNL/TM-13534. U.S. Department of Energy Office of Technology Development, Washington, DC, USA. 407 p.

    Google Scholar 

  • Siegrist RL, Lowe KS, Murdoch LC, Case TL, Pickering DA, Houk TC. 1998b. Horizontal Treatment Barriers of Fracture-Emplaced Iron and Permanganate Particles. In North Atlantic Treaty Organization (NATO)/Committee on the Challenges for Modern Society (CCMS) Pilot Study Special Session on Treatment Walls and Permeable Reactive Barriers. EPA 542-R-98-003. Washington, DC, USA, pp 77–82.

    Google Scholar 

  • Siegrist RL, Lowe KS, Murdoch LC, Case TL, Pickering DL. 1999. In situ oxidation by fracture emplaced reactive solids. J Environ Eng 125:429–440.

    CAS  Google Scholar 

  • Siegrist RL, Urynowicz MA, West OR, Crimi ML, Lowe KS. 2001. Principles and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press, Columbus, OH, USA. 336 p.

    Google Scholar 

  • Siegrist RL, Urynowicz MA, Crimi ML, Lowe KS. 2002. Genesis and effects of particles produced during in situ chemical oxidation using permanganate. J Environ Eng 128:1068:1079.

    Google Scholar 

  • Siegrist RL, Crimi ML, Munakata-Marr J, Illangasekare T, Lowe KS, Van Cuyk S, Dugan P, Heiderscheidt J, Jackson S, Petri B, Sahl J, Seitz S. 2006. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs. ER-1290 Final Report. DoD Strategic Environmental Research and Development Program (SERDP), Washington, DC, USA. 235 p. http://www.serdp.org/. Accessed November 2, 2012.

  • Siegrist RL, Crimi ML, Munakata-Marr J, Illangasekare T, Dugan P, Heiderscheidt J, Petri B, Sahl J. 2008a. Chemical Oxidation for Clean Up of Contaminated Ground Water. In Annable MD, Teodorescu M, Hlavinek P, Diels L, eds, Methods and Techniques for Cleaning-Up Contaminated Sites. NATO Science for Peace and Security Series. Springer Publishing, Dordrecht, The Netherlands, pp 45–58.

    Google Scholar 

  • Siegrist RL, Petri B, Krembs F, Crimi ML, Ko S, Simpkin T, Palaia T. 2008b. In Situ Chemical Oxidation for Remediation of Contaminated Ground Water. Proceedings, ISCO Technology Practices Workshop. ESTCP ER-0623. Golden, CO, USA, March 7–8, 2007. 77 p. http://www.serdp.org/. Accessed November 2, 2012.

  • Siegrist RL, Crimi ML, Petri B, Simpkin T, Palaia T, Krembs FJ, Munakata-Marr J, Illangasekare T, Ng G, Singletary M, Ruiz N. 2010. In Situ Chemical Oxidation for Groundwater Remediation: Site Specific Engineering and Technology Application. ER-0623. Version PRv1.01, October 29, 2010). Final Report. Version PRv1.01, October 29, 2010). ESTCP, Arlington, VA, USA. http://www.serdp.org/. Accessed January 25, 2014.

  • Siegrist RL, Crimi M, Simpkin TJ, eds. 2011. In Situ Chemical Oxidation for Groundwater Remediation. Springer, New York, NY, USA. 678 p.

    Google Scholar 

  • Silva JAK. 2011. The Utility of Polymer Amendment for Enhancing In Situ Remediation Effectiveness. PhD Thesis. Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Sirguey C, de Souza e Silva PT, Schwartz C, Simonnot M. 2008. Impact of chemical oxidation on soil quality. Chemosphere 72:282–289.

    CAS  Google Scholar 

  • Smith BA, Teel AL, Watts RJ. 2004. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems. Environ Sci Technol 38:5465–5469.

    CAS  Google Scholar 

  • Smith BA, Teel AL, Watts RJ. 2006. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton’s reagent. J Contam Hydrol 85:229–246.

    CAS  Google Scholar 

  • Smith BA, Marley MC, O’Shaughnessy K, Maclean DA, Santos DA. 2012. In-Situ Chemical Oxidation (ISCO) Using Catalyzed Hydrogen Peroxide to Remediate a DNAPL Source Area. Proceedings, 8th International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 19–22.

    Google Scholar 

  • Smith MM, Silva JAK, Munakata-Marr J, McCray JE. 2008. Compatibility of polymers and chemical oxidants for enhanced groundwater remediation. Environ Sci Technol 42:9296–9301.

    CAS  Google Scholar 

  • Sra KS, Thomson NR, Barker JF. 2010. Persistence of persulfate in uncontaminated aquifer materials. Environ Sci Technol 44:3098–3104.

    CAS  Google Scholar 

  • Stewart CL. 2002. Density-Driven Permanganate Solution Delivery and Chemical Oxidation of a Thin Trichloroethene DNAPL Pool in a Sandy Aquifer. MSc Thesis. University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  • Stewart R. 1964. Oxidation Mechanisms. W.A. Benjamin, New York, NY, USA.

    Google Scholar 

  • Struse AM, Siegrist RL, Dawson HE, Urynowicz MA. 2002. Diffusive transport of permanganate during in situ oxidation. J Environ Eng 128:327–334.

    CAS  Google Scholar 

  • Sun H, Yan Q. 2007. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. J Hazard Waste Hazard Mater 144:164–170.

    CAS  Google Scholar 

  • Sun Y, Pignatello JJ. 1992. Chemical treatment of pesticide wastes. Evaluation of Fe(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. J Agric Food Chem 40:332–337.

    Google Scholar 

  • Sung W, Morgan JJ. 1980. Kinetics and product of ferrous iron oxygenation in aqueous systems. Environ Sci Technol 14:561–567.

    CAS  Google Scholar 

  • Teel AL, Finn DD, Schmidt JT, Cutler LM, Watts RJ. 2007. Rates of trace mineral-catalyzed decomposition of hydrogen peroxide. J Environ Eng 133:853–858.

    CAS  Google Scholar 

  • Terzaghi K, Peck RB. 1948. Soil Mechanics in Engineering Practice. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Thomson NR, Johnson RL. 2000. Air distribution during in situ air sparging: An overview of mathematical modeling. J Hazard Mater 72:265–282.

    CAS  Google Scholar 

  • Tollefsrud E, Schreier CG. 2002. Effectiveness of chemical oxidation to remove organochlorine pesticides from soil. Proceedings, Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, USA. Battelle Press, Columbus, OH, USA, Paper 2C-16.

    Google Scholar 

  • Tratnyek PG, Johnson TL, Warner SD, Clarke HS, Baker JA. 1998. In Situ Treatment of Organics by Sequential Reduction and Oxidation. In Wickramanayake GB, Hinchee RE, eds, Physical, Chemical, and Thermal Technologies: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 371–376.

    Google Scholar 

  • Tsitonaki A, Petri B, Crimi M, Mosbæk H, Siegrist RL, Bjerg PL. 2010. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit Rev Environ Sci Technol 40:55–91.

    CAS  Google Scholar 

  • Tunnicliffe BS, Thomson NR. 2004. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate. J Contam Hydrol 75:91–114.

    CAS  Google Scholar 

  • Tyre BW, Watts RJ, Miller GC. 1991. Treatment of four biorefractory contaminants in soils using catalyzed hydrogen peroxide. J Environ Qual 20:832–838.

    CAS  Google Scholar 

  • Urynowicz MA, Siegrist RL. 2000. Chemical Degradation of TCE DNAPL by Permanganate. In Wickramanayake GB, Gavaskar AR, Chen ASC, eds, Chemical Oxidation and Reactive Barriers: Remediation of Chlorinated and Recalcitrant Compounds Series C2-6. Battelle Press, Columbus, OH, USA, pp 75–82.

    Google Scholar 

  • Urynowicz MA, Siegrist RL. 2005. Interphase mass transfer during chemical oxidation of TCE DNAPL in an aqueous system. J Contam Hydrol 80:93–106.

    CAS  Google Scholar 

  • Urynowicz MA, Balu B, Udayasankar U. 2008. Kinetics of natural oxidant demand by permanganate in aquifer solids. J Contam Hydrol 96:87–194.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). 1998. Field Applications of In Situ Remediation Technologies: Chemical Oxidation. EPA 542-R-98-008. USEPA OSWER, Washington, DC, USA. http://www.epa.gov/swertio1/download/remed/chemox.pdf. Accessed November 2, 2012.

  • USEPA. 2003. The DNAPL Remediation Challenge: Is There a Case for Source Depletion?. 600-R-03-143. USEPA Office of Research and Development, Washington, DC, USA. December.

    Google Scholar 

  • USEPA. 2008. Triad Central Website. http://www.triadcentral.org. Accessed January 25, 2014.

  • Vella PA, Veronda B. 1994. Oxidation of Trichloroethylene: A Comparison of Potassium Permanganate and Fenton’s Reagent. In In Situ Chemical Oxidation for the Nineties, Vol 3. Technomic Publishing, Inc., Lancaster, PA, USA, pp 62–73.

    Google Scholar 

  • Vella PA, Deshinsky G, Boll JE, Munder J, Joyce WM. 1990. Treatment of low-level phenols with potassium permanganate. Res J Water Pollut Control Fed 62:907–914.

    CAS  Google Scholar 

  • Venkatadri R, Peters RW. 1993. Chemical oxidation technologies: Ultraviolet light/hydrogen peroxide, Fenton’s reagent, and titanium dioxide assisted photocatalysis. J Hazard Waste Hazard Mater 10:107–149.

    CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG. 2006. Kinetics of contaminant degradation by permanganate. Environ Sci Technol 40:1055–1061.

    CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT. 2007. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environ Sci Technol 41:1010–1015.

    CAS  Google Scholar 

  • Walling C. 1975. Fenton’s reagent revisited. Account Chem Res 8:125–131.

    CAS  Google Scholar 

  • Watts RJ, Smith BR. 1991. Catalyzed hydrogen peroxide treatment of octachlorodibenzo-pdioxin (OCCD) in surface soils. Chemosphere 23:949–955.

    CAS  Google Scholar 

  • Watts RJ, Teel AL. 2005. Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagation-CHP) for in situ soil and groundwater remediation. J Environ Eng 131:612–622.

    CAS  Google Scholar 

  • Watts RJ, Rausch RA, Leung SW, Udell MD. 1990. Treatment of pentachlorophenol contaminated soils using Fenton's reagent. J Hazard Waste Hazard Mater 7:335–345.

    CAS  Google Scholar 

  • Watts RJ, Leung SW, Udell MD. 1991. Treatment of contaminated soils using catalyzed hydrogen peroxide. Proceedings, First International Symposium on Chemical Oxidation. Technomic, Nashville, TN, USA. February 20–22.

    Google Scholar 

  • Watts RJ, Jones AP, Chen P, Kenny A. 1997. Mineral-catalyzed Fenton-like oxidation of sorbed chlorobenzenes. Water Environ Res 69:269–275.

    CAS  Google Scholar 

  • Watts RJ, Foget MK, Kong SH, Teel AL. 1999. Hydrogen peroxide decomposition in model subsurface systems. J Hazard Mater B69:229–243.

    Google Scholar 

  • Watts RJ, Sarasa J, Loge FJ, Teel AL. 2005a. Oxidative and reductive pathways in manganese-catalyzed Fenton's reactions. J Environ Eng 131:158–164.

    CAS  Google Scholar 

  • Watts RJ, Howsawkeng J, Teel AL. 2005b. Destruction of a carbon tetrachloride dense nonaqueous phase liquid by modified Fenton's reagent. J Environ Eng 131:1114–1119.

    CAS  Google Scholar 

  • Watts RJ, Finn DD, Cutler LM, Schmidt JT, Teel AL. 2007. Enhanced stability of hydrogen peroxide in the presence of subsurface solids. J Contam Hydrol 91:312–326.

    CAS  Google Scholar 

  • West OR, Siegrist RL, Mitchell TJ, Jenkins RA. 1995. Measurement error and spatial variability effects on characterization of volatile organics in the subsurface. Env Sci Technol 29:647–656.

    CAS  Google Scholar 

  • West OR, Cline SR, Holden WL, Gardner FG, Schlosser BM, Thate JE, Pickering DA, Houk TC. 1997. A Full-Scale Field Demonstration of In Situ Chemical Oxidation through Recirculation at the X-701B Site. ORNL/TM-13556. Oak Ridge National Laboratory, Oak Ridge, TX, USA. 114 p.

    Google Scholar 

  • West OR, Cline SR, Siegrist RL, Houk TC, Holden WL, Gardner FG, Schlosser RM. 1998. A Field-Scale Test of In Situ Chemical Oxidation through Recirculation. Proceedings, Spectrum ’98 International Conference on Nuclear and Hazardous Waste Management, Denver, CO, USA, September 13–18, pp 1051–1057.

    Google Scholar 

  • Woods LM. 2008. In Situ Remediation Induced Changes in Subsurface Properties and Trichloroethene Partitioning Behavior. MSc Thesis. Environmental Science and Engineering Division, Colorado School of Mines, Golden, CO, USA.

    Google Scholar 

  • Woods PL, Siegrist RL, Crimi M. 2012. Effects of in situ remediation using oxidants or surfactants on subsurface organic matter and sorption of trichloroethene. J Ground Water Monit Remediat 32:96–105.

    Google Scholar 

  • Wymore R, Cross PE, Baird D. 2010. Case Study: CHP Treatment of a TCE DNAPL Plume. Presentation at the Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2010). In Fields KA, Wickramanayake GB (Chairs), Remediation of Chlorinated and Recalcitrant Compounds – 2010. ISBN 978-0-9819730-2-9. Battelle Memorial Institute, Columbus, OH, USA, Abstract D-005.

    Google Scholar 

  • Xu X, Thomson NR. 2007. Stability of hydrogen peroxide in the presence of aquifer solids using a green chelating reagent, Chemosphere 69:755–762.

    CAS  Google Scholar 

  • Xu X, Thomson NR. 2008. Estimation of the maximum consumption of permanganate by aquifer solids using a modified chemical oxygen demand test. ASCE J Environ Eng134:353–361.

    CAS  Google Scholar 

  • Xu X, Thomson NR. 2009. A long-term bench-scale investigation of permanganate consumption by aquifer materials. J Contam Hydrol 110:73–86.

    CAS  Google Scholar 

  • Yan YE, Schwartz FW. 1998. Oxidation of Chlorinated Solvents by Permanganate. In Wickramanayake GB, Hinchee RE, eds, Physical, Chemical, and Thermal Technologies: Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH, USA, pp 403–408.

    Google Scholar 

  • Yan YE, Schwartz FW. 1999. Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J Contam Hydrol 37:343–365.

    CAS  Google Scholar 

  • Yeh CK-J, Wu H-M, Chen T-C. 2003. Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems. J Hazard Mater 96:29–51.

    CAS  Google Scholar 

  • Yukselen-Aksoy Y, Khodadoust AP, Reddy KR. 2010. Destruction of PCB 44 in spiked subsurface soils using activated persulfate oxidation. Water Air Soil Pollut 209:419–427.

    CAS  Google Scholar 

  • Zhang H, Ji L, Wu F, Tan J. 2005. In situ ozonation of anthracene in unsaturated porous media. J Hazard Mater 120:143–148.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siegrist, R.L., Crimi, M., Thomson, N.R., Clayton, W.S., Marley, M.C. (2014). IN SITU Chemical Oxidation. In: Kueper, B., Stroo, H., Vogel, C., Ward, C. (eds) Chlorinated Solvent Source Zone Remediation. SERDP ESTCP Environmental Remediation Technology, vol 7. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6922-3_9

Download citation

Publish with us

Policies and ethics