Skip to main content
Log in

Inoculation of Soil with Cadmium-Resistant Bacteria Enhances Cadmium Phytoextraction by Vetiveria nemoralis and Ocimum gratissimum

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Two cadmium-resistant bacteria, Ralstonia sp. TAK1 and Arthrobacter sp. TM6, produced exopolymers that promoted cadmium solubilization in contaminated soil. The enhancement of cadmium uptake and accumulation in a monocot (Vetiveria nemoralis, vetiver grass) and a dicot (Ocimum gratissimum, African basil) was investigated in a greenhouse study. Compared with the uninoculated control, Ralstonia sp. TAK1 and Arthrobacter sp. TM6 increased cadmium accumulation in the roots and shoots of V. nemoralis. These cadmium-resistant bacteria increased the cadmium content of whole V. nemoralis plants similarly to ethylenediaminetetraacetic acid (EDTA) treatment alone. In contrast, only Arthrobacter sp. TM6 enhanced cadmium accumulation in the roots and shoots of O. gratissimum. The highest cadmium content of whole O. gratissimum plants was observed when the plant was treated with EDTA following treatment with Arthrobacter sp. TM6. The phytoextraction coefficient and translocation factor (TF) of bacteria-inoculated V. nemoralis were higher than those of O. gratissimum. Arthrobacter sp. TM6 increased the phytoextraction coefficients and TFs in V. nemoralis and O. gratissimum. These results indicate that Arthrobacter sp. TM6 and both tested plant species promote cadmium phytoextraction in contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Belimov, A. A., Hontzeas, N., Safronova, V. I., Demchinskaya, S. V., Piluzza, G., Bullitta, S., & Glick, B. R. (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biology and Biochemistry, 37, 241–250.

    Article  CAS  Google Scholar 

  • Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cadmium toxicity in plant. Brazilian Journal of Plant Physiology, 17, 21–34.

    Article  CAS  Google Scholar 

  • Blaylock, M. J., Salt, D., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31, 860–865.

    Article  Google Scholar 

  • Chaiyarat, R., Suebsima, R., Putwattana, N., Kruatrachue, M., & Pokethitiyook, P. (2011). Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water, Air and Soil Pollution, 214, 383–392.

    Article  CAS  Google Scholar 

  • Chantachon, S., Kruatrachue, M., Pokethitiyook, P., Upatham, S., Tantanasarit, S., & Soonthornsarathool, V. (2004). Phytoextraction and accumulation of lead from contaminated soil by vetiver grass: Laboratory and simulated field study. Water, Air and Soil Pollution, 154, 37–55.

    Article  CAS  Google Scholar 

  • Chen, J. H., Czaika, D., Lion, L., Shuler, M., & Ghiorse, W. (1995). Trace metal mobilization in soil by bacterial polymer. Environmental Health Perspectives, 103, 53–58.

    CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2005). Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere, 60, 1365–1375.

    Article  CAS  Google Scholar 

  • Chiu, K. K., Ye, Z. H., & Wong, M. H. (2006). Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge: A greenhouse study. Bioresource Technology, 97, 158–170.

    Article  CAS  Google Scholar 

  • Chompoothawat, N., Wongthanate, J., Ussawarujikulchai, A., & Prapagdee, B. (2010). Removal of cadmium ion from aqueous solution by exopolysaccharide-producing bacterium, Ralstonia sp. Fresenius Environmental Bulletin, 19, 2919–2923.

    CAS  Google Scholar 

  • Evangelou, M. W. H., Ebel, M., & Schaeffer, A. (2007). Chelate assisted phytoextraction of heavy metals from soil: Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68, 989–1003.

    Article  CAS  Google Scholar 

  • Fitzgerald, E. J., Caffrey, J. M., Nesaratnam, S. T., & McLoughlin, P. (2003). Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environmental Pollution, 123, 67–74.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.

    Article  CAS  Google Scholar 

  • Gutnick, D. L., & Bach, H. (2000). Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Applied Microbiology and Biotechnology, 54, 451–460.

    Article  CAS  Google Scholar 

  • He, L. Y., Chen, Z. J., Ren, G. D., Zhang, Y. F., Qian, M., & Sheng, X. F. (2009). Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. Ecotoxicology and Environmental Safety, 72, 1343–1348.

    Article  CAS  Google Scholar 

  • Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50, 340–343.

    Article  CAS  Google Scholar 

  • Jensen-Spaulding, A., Shuler, M. L., & Lion, L. W. (2004). Mobilization of adsorbed copper and lead from naturally aged soil by bacterial extracellular polymers. Water Research, 38, 1121–1128.

    Article  CAS  Google Scholar 

  • Jiang, X. J., Luo, Y. M., Zhao, Q. G., Baker, A. J. M., Christie, P., & Wong, M. H. (2003). Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere, 50, 813–818.

    Article  CAS  Google Scholar 

  • Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72, 157–164.

    Article  CAS  Google Scholar 

  • Kim, S. Y., Kim, J. H., Kim, C. J., & Oh, D. K. (1996). Metal adsorption of the polysaccharide produced from Methylobacterium organophilum. Biotechnology Letters, 18, 1161–1164.

    Article  CAS  Google Scholar 

  • Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science and Technology, 29, 1232–1238.

    Article  CAS  Google Scholar 

  • Lebeau, T., Braud, A., & Jezequel, K. (2008). Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environmental Pollution, 153, 497–522.

    Article  CAS  Google Scholar 

  • Lors, C., Tiffreau, C., & Laboudigue, A. (2004). Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments. Chemosphere, 56, 619–630.

    Article  CAS  Google Scholar 

  • Ma, Y., Rajkumar, M., & Freitas, H. (2009). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90, 831–837.

    Article  Google Scholar 

  • Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124, 375–378.

    Article  CAS  Google Scholar 

  • Moreno, J. L., Hernandez, T., Perez, A., & Garcia, C. (2002). Toxicity of cadmium to soil microbial activity: Effect of sewage sludge addition to soil on the ecological dose. Applied Soil and Ecology, 21, 149–158.

    Article  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper-accumulation metals in plants. Water, Air and Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Prapagdee, B., & Watcharamusik, A. (2009). Adaptive and cross-protective responses against cadmium and zinc toxicity in cadmium-resistant bacterium isolated from a zinc mine. Brazilian Journal of Microbiology, 40, 838–845.

    Article  CAS  Google Scholar 

  • Prapagdee, B., Chumphonwong, N., Khonsue, N., & Mongkolsuk, S. (2012). Influence of cadmium resistant bacteria on promoting plant root elongation and increasing cadmium mobilization in contaminated soil. Fresenius Environmental Bulletin, 21, 1186–1191.

    CAS  Google Scholar 

  • Prapagdee, B., Chanprasert, M., & Mongkolsuk, S. (2013). Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere, 92, 659–666.

    Article  CAS  Google Scholar 

  • Prokop, Z., Cupr, P., Zlevorava-Zalmalikova, V., Komarek, J., Dusek, L., & Holoubek, I. (2003). Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environmental Research, 91, 119–12.

    Article  CAS  Google Scholar 

  • Rajkumar, M., & Freitas, H. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere, 71, 834–842.

    Article  CAS  Google Scholar 

  • Sheng, X. F., & Xia, J. J. (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 64, 1036–1042.

    Article  CAS  Google Scholar 

  • Sheng, X., He, L., Wang, Q., Ye, H., & Jiang, C. (2008a). Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. Journal of Hazardous Materials, 155, 17–22.

    Article  CAS  Google Scholar 

  • Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008b). Characterization of heavy metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156, 1164–1170.

    Article  CAS  Google Scholar 

  • Singh, O. V., Labana, S., Pandey, G., Budhiraja, R., & Jain, R. K. (2003). Phytoremediation: An overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology, 61, 405–412.

    CAS  Google Scholar 

  • Wu, S. C., Luo, Y. M., Cheung, K. C., & Wong, M. H. (2006). Influence of bacteria on Pb and Zn speciation, mobility and bioavailability in soil: A laboratory study. Environmental Pollution, 144, 765–773.

    Article  CAS  Google Scholar 

  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment, 368, 456–464.

    Article  CAS  Google Scholar 

  • Zheljazkov, V. D., Craker, L. E., & Xing, B. (2006). Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany, 58, 9–16.

    Article  CAS  Google Scholar 

  • Zheljazkov, V. D., Craker, L. E., Xing, B., Nielsen, N. E., & Wilcox, A. (2008). Aromatic plant production on metal contaminated soils. The Science of the Total Environment, 395, 51–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Council of Thailand (NRTC), Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjaphorn Prapagdee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khonsue, N., Kittisuwan, K., Kumsopa, A. et al. Inoculation of Soil with Cadmium-Resistant Bacteria Enhances Cadmium Phytoextraction by Vetiveria nemoralis and Ocimum gratissimum . Water Air Soil Pollut 224, 1696 (2013). https://doi.org/10.1007/s11270-013-1696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1696-9

Keywords

Navigation