Skip to main content
Log in

Brazilian Palygorskite as Adsorbent for Metal Ions from Aqueous Solution—Kinetic and Equilibrium Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Natural palygorskite was used as an adsorbent for the removal of copper, cobalt and nickel from an aqueous solution. All assays were performed under controlled conditions to establish the adsorption capacity of the solid. Initially, the clay was characterized by chemical analysis, XRD, infrared spectroscopy and thermogravimetry. Adsorption experiments for the ions in aqueous solution were carried out by a batch method through which the reaction time, initial concentration of cations, temperature and pH of the aqueous solution were systematically varied. First-order, pseudo-second-order and intraparticle diffusion models were used to describe the kinetic data. The results show that the processes were fitted well by the pseudo-second-order model. Moreover, the equilibrium solid–cation systems followed the Langmuir isotherm model. The results indicate that raw palygorskite could be employed as a low-cost material for the removal of heavy metals from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamson, A. W. (1990). Physical Chemistry of Surfaces. New York: Wiley.

    Google Scholar 

  • Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A., Majeda, A., & Walker, G. M. (2006). Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies. Water Research, 40(14), 2645–2658.

    Article  CAS  Google Scholar 

  • Álvarez-Ayuso, E., & Garcia-Sánchez, A. (2003). Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environmental Pollution, 125(3), 337–344.

    Article  Google Scholar 

  • Álvarez-Ayuso, E., & Garcia-Sánchez, A. (2007). Removal of cadmium from aqueous solutions by palygorskite. Journal of Hazardous Materials, 147(1–2), 594–600.

    Article  Google Scholar 

  • Bache, B. W. (1976). The measurement of cation exchange capacity of soils. Journal Science Food Agriculture, 27(3), 273–280.

    Article  CAS  Google Scholar 

  • Bailey, S. W. (1980). Structure of layer silicates. In G. W. Brindley & G. Brown (Eds.), Crystal structures of clay minerals and their X-Ray identification (pp. 1–123). London: Mineralogical Society.

    Google Scholar 

  • Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.

    Article  CAS  Google Scholar 

  • Balistrieri, L. S., & Murray, J. W. (1981). The surface chemistry of goethite (−FeOOH) in major ion seawater. American Journal Science, 281(5), 788–806.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Advanced Colloid Interface Science, 40(2), 114–131.

    Article  Google Scholar 

  • Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.

    Article  CAS  Google Scholar 

  • Bradley, W. F. (1940). The structural scheme of atalpugite. American Mineralogist, 25(6), 405–410.

    CAS  Google Scholar 

  • Cai, Y., Xue, J., & Polya, D. A. (2007). A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites. Spectrochimica Acta A, 66(2), 282.

    Article  Google Scholar 

  • Carrado, K. A., Decarreau, A., Petit, S., Bergaya, F., & Lagaly, G. (2006). Synthetic clay minerals and purification of natural clays. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of Clay Science (Vol. 1, pp. 115–140). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Chen, H., & Wang, A. (2007). Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. Journal of Colloid Interface Science, 307(2), 309–316.

    Article  CAS  Google Scholar 

  • Chen, H., & Wang, A. (2009). Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite. Journal of Hazardous Materials, 165(1–3), 223–231.

    Article  CAS  Google Scholar 

  • Chen, H., Zhao, Y., & Wang, A. (2007). Removal of Cu (II) from aqueous solution by adsorption onto acid-activated palygorskite. Journal of Hazardous Materials, 149(2), 346–354.

    Article  CAS  Google Scholar 

  • Cheng, H., Yang, J., & Frost, R. L. (2011). Thermogravimetric analysis-mass spectrometry (TG-MS) of selected Chinese palygorskites—implications for structural water. Thermochimimica Acta, 512(1–2), 202–207.

    Article  CAS  Google Scholar 

  • Fan, Q., Li, Z., Zhao, H., Jia, Z., Xu, J., & Wu, W. (2009). Adsorption of Pb(II) on palygorskite from aqueous solution: effects of pH, ionic strength and temperature. Applied Clay Science, 43(3), 111–116.

    Article  Google Scholar 

  • Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57A, 385–470.

    Google Scholar 

  • Frost, R. L., & Ding, Z. (2003). Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochimica Acta, 397(1–2), 119–128.

    Article  CAS  Google Scholar 

  • Frost, R. L., Locos, O. B., Ruan, H., & Kloprogge, J. T. (2001). Near-infrared and middle infra-red spectroscopic study of sepiolites and palygorsquite. Vibrational Spectroscopy, 27(1), 1–13.

    Article  CAS  Google Scholar 

  • Guggenheim, S., & Krekeler, P. S. (2011). The structure and microtextures of the palygorskite–sepiolite group minerals. In A. Singer & E. Galan (Eds.), Developments in Palygorskite-Sepiolite Research A New Outlook on these Nanomaterials (pp. 3–29). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Handen, W. L., & Schwint, I. A. (1967). Attapulgite its properties and applications. Industrial Engineering Chemistry, 59(9), 59–69.

    Google Scholar 

  • Ho, Y. S., & Mckay, G. (1999). Pseudo-second order model for sorption process. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of Hazardous Materials, 211–212, 317–331.

    Article  Google Scholar 

  • Jeffery, P. G., & Hutchison, D. (1981). Chemical methods of rock analysis. Oxford: Pergamon Press.

    Google Scholar 

  • Jiratova, K. (1981). Isoelectric point of modified alumina. Applied Catalysis, 1(1), 165–167.

    Article  CAS  Google Scholar 

  • Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. Journal of Hazardous Materials, 244–245, 444–456.

    Article  Google Scholar 

  • Kobya, M., Demirbas, E., Sinter, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96(13), 1518–1521.

    Article  CAS  Google Scholar 

  • Koedrith, P., & Seo, Y. R. (2011). Advances in carcinogenic metal toxicity and potential molecular markers. International Journal of Molecular Science, 12(12), 9576–9595.

    Article  CAS  Google Scholar 

  • Kong, Y., Wei, J., Wang, Z., Sun, T., Yao, C., & Chen, Z. (2011). Heavy metals removal from solution by polyaniline/palygorskite composite. Journal of Applied Polymer Science, 122(3), 2054–2059.

    Article  CAS  Google Scholar 

  • Krestov, G. A. (1991). Thermodynamics of solvation: Solution and dissolution; ions and solvents; structure and energetics. London: Ellis Horwood.

    Google Scholar 

  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.

    Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40(9), 1361–1403.

    Article  CAS  Google Scholar 

  • Lazarevic, S., Jankovic´-Castvan, I., Djokic, V., Radovanovic, Z., Janackovic, D., & Petrovic, R. (2010). Iron-modified sepiolite for Ni2+ sorption from aqueous solution: an equilibrium, kinetic, and thermodynamic study. Journal of Chemical Engineering Data, 55(12), 5681–5689.

    Article  CAS  Google Scholar 

  • Lee, T. (2012). Removal of heavy metals in storm water runoff using porous vermiculite expanded by microwave preparation. Water, Air, & Soil Pollution, 223(6), 3399–3408.

    Article  CAS  Google Scholar 

  • Li, Z., Zhang, L., Zang, Z. P., Chang, X. J., & Zou, X. J. (2010). Attapulgite modified with 2-hydroxy-1-naphthaldehyde as selective solid-phase extractant for determination of copper(II) in environmental samples by ICP-OES. Microchimica Acta, 171(1–2), 161–168.

    CAS  Google Scholar 

  • Mendelovici, E. (1973). Infrared study of attalpugite and HCl-treated attalpugite. Clay Clays Minerals, 21(2), 115–119.

    Article  CAS  Google Scholar 

  • Post, J. L., & Crawford, S. (2007). Varied forms of palygorskite and sepiolite from different geologic systems. Applied Clay Science, 36(4), 232–244.

    Article  CAS  Google Scholar 

  • Potgieter, J. H., Potgieter-Vermaak, S. S., & Kalibantonga, P. D. (2006). Heavy metals removal from solution by palygorskite clay. Minerals Engineering, 19(5), 463–470.

    Article  CAS  Google Scholar 

  • Sari, A., Tuzen, M., Citak, D., & Soylak, M. (2007). Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Journal of Hazardous Materials, 148(1–2), 387–394.

    Article  CAS  Google Scholar 

  • Sdiri, A., Higashi, T., Chaabouni, R., & Jamoussi, F. (2012). Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water, Air, & Soil Pollution, 223(3), 1191–1204.

    Article  CAS  Google Scholar 

  • Sheikhhosseini, A., Shirvani, M., & Shariatmadari, H. (2013). Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma, 192, 249–253.

    Article  CAS  Google Scholar 

  • Shirvani, M., Kalbasi, M., Shariatmadari, H., Nourbakhsh, F., & Najafi, B. (2006). Sorption–desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis. Chemosphere, 65(11), 2178–2184.

    Article  CAS  Google Scholar 

  • Shuali, U., Nir, S., & Rytwo, G. (2011). Adsorption and surfactants, dyes and cationic herbicides on sepiolite and palygroskite: Modifications, applications and modeling. In E. Singer & E. Galan (Eds.), Developments in palygorskite-sepiolite research, a new outlook on these nanomaterials (pp. 351–369). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Srasra, N. F., & Srasra, E. (2010). Acid treatment of south Tunisian palygorskite: removal of Cd (II) from aqueous and phosphoric acid solutions. Desalination, 250(1), 26–34.

    Article  Google Scholar 

  • Tan, L., Jin, Y., Chen, J., Cheng, X., Wu, J., & Feng, L. (2011a). Sorption of radiocobalt (II) from aqueous solutions to Na-attapulgite. Journal of Radioanalytical and Nuclear Chemistry, 289(2), 601–610.

    Article  CAS  Google Scholar 

  • Tan, L., Jin, Y., Chen, J., Cheng, X., Wu, J., & Feng, L. (2011b). Sorption of radioeuropium onto attapulgite: effect of experimental conditions. Journal of Radioanalytical and Nuclear Chemistry, 3, 575–585.

    Article  Google Scholar 

  • Weber, W. J., Jr., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • Yao, C., Xu, Y., Kong, Y., Liu, W., Wang, W., Wang, Z., et al. (2012). Polypyrrole/palygorskite nanocomposite: a new chromate collector. Applied Clay Science, 67–68, 32–35.

    Article  Google Scholar 

  • Zhao, D., Zhou, J., & Liu, N. (2006). Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior. Applied Clay Science, 33(3–4), 161–170.

    Article  CAS  Google Scholar 

  • Zhou, S., Xue, A., Zhao, Y., Wang, Q., Chen, Y., Li, M., et al. (2011). Competitive adsorption of Hg2+, Pb2+ and Co2+ ions on polyacrylamide/attapulgite. Desalination, 270(1–3), 269–274.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq and CAPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria G. Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, A.M.B.M., Coelho, L.F.O., Gomes, S.S.S. et al. Brazilian Palygorskite as Adsorbent for Metal Ions from Aqueous Solution—Kinetic and Equilibrium Studies. Water Air Soil Pollut 224, 1687 (2013). https://doi.org/10.1007/s11270-013-1687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1687-x

Keywords

Navigation