Skip to main content
Log in

Removal of strontium from aqueous solutions by sodium dodecyl sulfate-modified palygorskite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Palygorskite (PAL) was modified with sodium dodecyl sulfate (SDS) for the removal of Sr(II) from aqueous solutions. Analysis of the structural characteristics of PAL before and after modification showed that PAL was successfully modified with SDS. Sorption experiments were conducted in batch mode under optimum conditions to evaluate the effect of initial pH and co-existing ions on the removal of Sr(II) by SDS-modified PAL. The equilibrium sorption isotherm data for Sr(II) were analyzed using Freundlich and Langmuir isotherm sorption equations, and the data fitted well to the Freundlich isotherm model. Pseudo-first-order and pseudo-second-order kinetic models were examined, and the sorption of Sr(II) showed better agreement with the pseudo-second-order kinetic model (r2 > 0.99). The desorption experiments indicated that the SDS-modified PAL having sorbed Sr(II) does not release significant amounts of Sr(II) into the environment under natural conditions, thus avoiding secondary pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dezerald L, Kohanoff JJ, Correa AA, Caro A, Pellenq RJ-M, Ulm FJ, Saúl A (2015) Cement as a waste form for nuclear fission products: the case of 90Sr and its daughters. Environ Sci Technol 49:13676–13683

    Article  CAS  PubMed  Google Scholar 

  2. Boyer A, Ning P, Killey D, Klukas M, Rowan D, Simpson AJ, El P (2018) Strontium adsorption and desorption in wetlands: Role of organic matter functional groups and environmental implications. Water Res 133:27–36

    Article  CAS  PubMed  Google Scholar 

  3. Corcho-Alvarado JA, Balsiger B, Sahli H, Astner M, Byrde F, Röllin S, Holzer R, Mosimann N, Wüthrich S, Jakob A, Burger M (2016) Long-term behavior of 90Sr and 137Cs in the environment: case studies in Switzerland. J Environ Radioact 160:54–63

    Article  CAS  PubMed  Google Scholar 

  4. Rahman ROA, Ibrahim HA, Hanafy M, Monem NMA (2010) Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility. Chem Eng J 157:100–112

    Article  CAS  Google Scholar 

  5. Nur T, Loganathan P, Kandasamy J, Vigneswaran S (2017) Removal of strontium from aqueous solutions and synthetic seawater using resorcinol formaldehyde polycondensate resin. Desalination 420:283–291

    Article  CAS  Google Scholar 

  6. Hong HJ, Kim BG, Ryu J, Park IS, Chung KS, Lee SM, Lee JB, Jeong HS, Kim H, Ryu T (2018) Preparation of highly stable zeolite-alginate foam composite for strontium (90Sr) removal from seawater and evaluation of Sr adsorption performance. J Environ Manage 205:192–200

    Article  CAS  PubMed  Google Scholar 

  7. Ivanets AI, Shashkova IL, Kitikova NV, Drozdova NV, Saprunova NA, Radkevich AV, Kul’bitskaya LV (2014) Sorption of strontium ions from solutions onto calcium and magnesium phosphates. Radiochemistry 56:32–37

    Article  CAS  Google Scholar 

  8. Zhang L, Wei J, Zhao X, Li F, Jiang F, Zhang M, Cheng X (2016) Removal of strontium(II) and cobalt(II) from acidic solution by manganese antimonite. Chem Eng J 302:733–743

    Article  CAS  Google Scholar 

  9. Yang J, Ma T, Li X, Tu J, Dang Z, Yang C (2018) Removal of heavy metals and metalloids by amino-modified biochar supporting nanoscale zero-valent iron. J Environ Qual 47:1196–1204

    Article  CAS  PubMed  Google Scholar 

  10. Oleksiienko O, Levchuk I, Sitarz M, Meleshevych S, Strelko V, Sillanpää M (2015) Removal of strontium (Sr2+) from aqueous solutions with titanosilicates obtained by the sol–gel method. J Colloid Interf Sci 438:159–168

    Article  CAS  Google Scholar 

  11. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Zarubo AM (2016) Mesoporous manganese oxides prepared by sol–gel method: synthesis, characterization and sorption properties towards strontium ions. Environ Nanotechnol Monit Manag 6:261–269

    Google Scholar 

  12. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Krivoshapkin PV, Krivoshapkina EF, Sillanpää M (2018) Sorption behavior of 85Sr onto manganese oxides with tunnel structure. J Radioanal Nucl Chem 316:673–683

    Article  CAS  Google Scholar 

  13. Ivanets AI, Katsoshvili LL, Krivoshapkin PV, Prozorovich VG, Kuznetsova TF, Krivoshapkina EF, Radkevich AV, Zarubo AM (2017) Sorption of strontium ions onto mesoporous manganese oxide of OMS-2 type. Radiochemistry 59:264–271

    Article  CAS  Google Scholar 

  14. Shashkova IL, Ivanets AI, Kitikova NV, Sillanpää M (2017) Effect of phase composition on sorption behavior of Ca-Mg phosphates towards Sr(II) ions in aqueous solution. J Taiwan Inst Chem E 80:787–796

    Article  CAS  Google Scholar 

  15. Álvarez-Ayuso E, García-Sánchez A (2007) Removal of cadmium from aqueous solutions by palygorskite. J Hazard Mater 147:594–600

    Article  CAS  PubMed  Google Scholar 

  16. Potgieter JH, Potgieter-Vermaak SS, Kalibantonga PD (2006) Heavy metals removal from solution by palygorskite clay. Miner Eng 19:463–470

    Article  CAS  Google Scholar 

  17. Chen H, Wang A (2007) Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. J Colloid Interface Sci 307:309–316

    Article  CAS  PubMed  Google Scholar 

  18. Wang H, Wang X, Ma J, Xia P, Zhao J (2017) Removal of cadmium (II) from aqueous solution: a comparative study of raw attapulgite clay and a reusable waste-struvite/attapulgite obtained from nutrient-rich wastewater. J Hazard Mater 329:66–76

    Article  CAS  PubMed  Google Scholar 

  19. Huang J, Liu Y, Wang X (2008) Selective adsorption of tannin from flavonoids by organically modified attapulgite clay. J Hazard Mater 160:382–387

    Article  CAS  PubMed  Google Scholar 

  20. Thanos AG, Katsou E, Malamis S, Psarras K, Pavlatou EA, Haralambous KJ (2012) Evaluation of modified mineral performance for chromate sorption from aqueous solutions. Chem Eng J 211–212:77–88

    Article  CAS  Google Scholar 

  21. Deng Y, Gao Z, Liu B, Hu X, Wei Z, Sun C (2013) Selective removal of lead from aqueous solutions by ethylenediaminemodified attapulgite. Chem Eng J 223:91–98

    Article  CAS  Google Scholar 

  22. Peredo-Mancilla D, Dominguez H (2016) Adsorption of phenol molecules by sodium dodecyl sulfate (SDS) surfactants deposited on solid surfaces: a computer simulation study. J Mol Graphics Modell 65:108–112

    Article  CAS  Google Scholar 

  23. Shariati S, Faraji M, Yamini Y, Rajabi AA (2011) Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 270:160–165

    Article  CAS  Google Scholar 

  24. Qiao B, Liang Y, Wang TJ, Jiang Y (2017) Surface modification to produce hydrophobic nano-silica particlesusing sodium dodecyl sulfate as a modifier. Appl Surf Sci 364:103–109

    Article  CAS  Google Scholar 

  25. Moradi SE (2014) Microwave assisted preparation of sodium dodecyl sulphate (SDS) modified ordered nanoporous carbon and its adsorption for MB dye. J Ind Eng Chem 20:208–215

    Article  CAS  Google Scholar 

  26. Lin SH, Juang RS (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 92:315–326

    Article  CAS  PubMed  Google Scholar 

  27. Li SZ, Wu PX (2010) Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II). J Hazard Mater 173:62–70

    Article  CAS  PubMed  Google Scholar 

  28. Ma B, Oh S, Shin WS, Choi SJ (2011) Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination 276:336–346

    Article  CAS  Google Scholar 

  29. Han H, Cheng C, Hu S, Li X, Wang W, Xiao C, Xu Z, Shao D (2017) Facile synthesis of gelatin modified attapulgite for the uptake of uranium from aqueous solution. J Mol Liq 234:172–178

    Article  CAS  Google Scholar 

  30. Yin H, Yan X, Gu X (2017) Evaluation of thermally-modified calcium-rich attapulgite as a lowcost substrate for rapid phosphorus removal in constructed wetlands. Water Res 115:329–338

    Article  CAS  PubMed  Google Scholar 

  31. Mirzaeinejad M, Mansoori Y, Amiri M (2018) Amino functionalized ATRP-prepared polyacrylamide-g-magnetite nanoparticles for the effective removal of Cu(II) ions: kinetics investigations. Mater Chem Phys 205:195–205

    Article  CAS  Google Scholar 

  32. Augsburger MS, Strasser E, Perino E, Mercader RC, Pedregosa JC (1998) Ftir and mössbauer investigation of a substituted palygorskite: silicate with a channel structure. J Phys Chem Solids 59:175–180

    Article  CAS  Google Scholar 

  33. Giustetto R, Xamena FXLI, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) Maya blue: a computational and spectroscopic study. J Phys Chem B 109:19360–19368

    Article  CAS  PubMed  Google Scholar 

  34. Xu J, Li W, Yin Q, Zhu Y (2007) Direct electrochemistry of cytochrome c on natural nano-attapulgite clay modified electrode and its electrocatalytic reduction for H2O2. Electrochim Acta 52:3601–3606

    Article  CAS  Google Scholar 

  35. Wang L, Zhang J, Wang A (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly(acrylic acid)/attapulgite composite. Desalination 266:33–39

    Article  CAS  Google Scholar 

  36. Clark MW, Akhurst DJ, Fergusson L (2011) Removal of radium from groundwater using a modified bauxite refinery residue. J Environ Qual 40:1835–1843

    Article  CAS  PubMed  Google Scholar 

  37. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Use of spectroscopic techniques for Uranium(VI)/montmorillonite interaction modeling. Environ Sci Technol 38:1399–1407

    Article  CAS  PubMed  Google Scholar 

  38. Fan Q, Shao D, Lu Y, Wu W, Wang X (2009) Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(II) to Na-attapulgite. Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  39. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Sep Purif Technol 24:497–505

    Article  CAS  Google Scholar 

  40. Juang RS, Shao HJ (2002) A simplified equilibrium model for sorption of heavy metal ions from aqueous solutions on chitosan. Water Res 36:2999–3008

    Article  CAS  PubMed  Google Scholar 

  41. Baskaralingam P, Pulikesi M, Elango D, Ramamurthi V, Sivanesan S (2006) Adsorption of acid dye onto organobentonite. J Hazard Mater 128:138–144

    Article  CAS  PubMed  Google Scholar 

  42. Yavuz H, Denizli A, Güngüneş H, Safarikova M, Safarikc I (2006) Biosorption of mercury on magnetically modified yeast cells. Sep Purif Technol 52:253–260

    Article  CAS  Google Scholar 

  43. Yu Y, Zhuang YY, Wang ZH, Qiu MQ (2004) Adsorption of water-soluble dyes onto modified resin. Chemosphere 54:425–430

    Article  CAS  PubMed  Google Scholar 

  44. Liu QS, Zheng T, Wang P, Jiang JP, Li N (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem Eng J 157:348–356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Grant No. 41672228); and the National Water Pollution Control and Treatment Science and Technology Major Project (Grant No. 2018ZX07109-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, R., Jin, S., Yang, J. et al. Removal of strontium from aqueous solutions by sodium dodecyl sulfate-modified palygorskite. J Radioanal Nucl Chem 321, 151–159 (2019). https://doi.org/10.1007/s10967-019-06581-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06581-y

Keywords

Navigation