Skip to main content
Log in

The Effects of Glycine on Breakpoint Chlorination and Chlorine Dosage Control Methods for Chlorination and Chloramination Processes in Drinking Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Chlorine is the most commonly used chemical for water and wastewater disinfection worldwide, and it reacts with both ammonia and dissolved organic nitrogen. Using the salicylate spectrophotometric method, effects of glycine on the classic breakpoint chlorination are studied using glycine as a surrogate for dissolved organic nitrogen. The results show that the shape of the breakpoint chlorination curve with glycine was analogous to that of water without glycine. Increasing the glycine concentration moves the chlorination breakpoint curve to the right, demonstrating that more chlorine must be added to replace the chlorine consumed by glycine and yield the desired residual active chlorine concentration. At the peak of the chlorination breakpoint curve, both NH2Cl and mono-chlorinated organic chloramine reach their maximum. The Cl2/N ratio of the peak is linearly related to the glycine concentration, and our calculations indicate that the maximum of mono-chlorinated organic chloramine formation by glycine chlorination occurs at a stoichiometric ratio of 1:1; the same as that for chlorinating ammonia to NH2Cl. The distribution of NH2Cl and organic chloramines is controlled by [Gly]/[NH3-N]. At the breakpoint, ammonia and glycine are completely oxidized by chlorine, which leads to chlorine depletion. The stoichiometric ratio for the complete oxidation of glycine was 3:1, larger than that for complete oxidation of ammonia (2:1). For the different stoichiometric ratio in reaction of oxidation of ammonia and glycine, the sum of ammonia and glycine cannot be used as a chlorine dosage control parameter. The chlorine control method involving ammonia and glycine for chlorine and chloramination process is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abia, L., Armesto, X. L., Canle, M. L., García, M. V., & Santaballa, J. A. (1998). Oxidation of aliphatic amines by aqueous chlorine. Tetrahedron, 54(3–4), 521–530.

    Google Scholar 

  • Amiri, F., Mesquita, M. F., & Andrews, S. A. (2010). Disinfection effectiveness of organic chloramines, investigating the effect of pH. Water Research, 44(3), 845–853.

    Article  CAS  Google Scholar 

  • Antelo, J. M., Arce, F., & Parajo, M. (1995). Kinetic study of the formation of N-chloramines. International Journal of Chemical Kinetics, 27, 637–647.

    Article  CAS  Google Scholar 

  • Armesto, X. L., Canle, L. M., & Santaballa, J. A. (1993). α-Amino acids chlorination in aqueous media. Tetrahedron, 49, 275–284.

    Article  CAS  Google Scholar 

  • Armesto, X. L., Canle, L. M., Losada, M., & Santaballa, J. A. (1994). Concerted grob fragmentation in N-halo-a-amino acid decomposition. Journal of Organic Chemistry, 59, 4659–4664.

    Article  CAS  Google Scholar 

  • Armesto, X. L., Canle, L. M., Fernandez, M. I., Garcia, M. V., Rodriguez, S., & Santaballa, J. A. (2001). Intracellular oxidation of dipeptides: very fast halogenation of the amino-terminal residue. Journal Chemical Perkin Transaction, 2, 608–612.

    Article  Google Scholar 

  • Brosillon, S., Wolbert, D., Lemasle, M., Roche, P., & Mehrsheikh, A. (2006). Chlorination kinetics of glyphosate and its by-products: modeling approach. Water Research, 40(11), 2113–2124.

    Article  CAS  Google Scholar 

  • Cameron, G. N., Symons, J. M., Spencer, S. R., & Ma, J. Y. (1989). Minimizing THM formation during control of the Asiatic clam: a comparison of biocides. Journal AWWA, 81(10), 53–62.

    CAS  Google Scholar 

  • Conyers, B., & Scully, F. E. (1997). Chloramines V: products and implications of the chlorination of lysine in municipal wastewaters. Environmental Science and Technology, 31, 1680–1685.

    Article  CAS  Google Scholar 

  • Donnermair, M. M., & Blatchley, E. R. (2003). Disinfection efficacy of organic chloramines. Water Research, 37(7), 1557–1570.

    Article  CAS  Google Scholar 

  • Fayyad, M. K., & Al-Sheikh, A. M. (2001). Determination of N-chloramines in As-Samra chlorinated water and their effect on the disinfection process. Water Research, 35(5), 1304–1310.

    Article  CAS  Google Scholar 

  • Folkes, L. L., Candeias, L. P., & Wardman, P. (1995). Kinetics and mechanisms of hypochlorous acid reactions. Archives of Biochemistry and Biophysics, 323, 120–126.

    Article  CAS  Google Scholar 

  • Fox, T. C., Keefe, D. J., Scully, F. E., & Laikhter, A. (1997). Chloramines VII: chlorination of alanylphenylalanine in model solutions and in a wastewater. Environmental Science and Technology, 31, 1979–1984.

    Article  CAS  Google Scholar 

  • Jensen, N. J., & Johnson, D. J. (1990a). Interferences by monochloramine and organic chloramines in free available chlorine methods. 1. Amperometric titration. Environmental Science and Technology, 24(7), 981–985.

    Article  CAS  Google Scholar 

  • Jensen, N. J., & Johnson, D. J. (1990b). Interferences by monochloramine and organic chloramines in free available chlorine methods. 2. N,N-Diethyl-p-phenylenediamine. Environmental Science and Technology, 24(7), 985–990.

    Article  CAS  Google Scholar 

  • Keefe, D. J., Fox, C., Conyers, B., & Scully, F. E. (1997). Chloramines VI: chlorination of glycylphenylalanine in model solutions and in wastewater. Environmental Science and Technology, 31, 1973–1978.

    Article  CAS  Google Scholar 

  • Kim, Y., & Bae, B. U. (2007). Design and evaluation of hydrolic baffled-channel PAC contactor for taste and odor removal from drinking water supplies. Water Research, 41(10), 2256–2264.

    Article  CAS  Google Scholar 

  • Lim, M. Y., Kim, J. M., & Ko, G. P. (2010). Disinfection kinetics of murine norovirus using chlorine and chlorine dioxide. Water Research, 4(10), 3243–3251.

    Article  Google Scholar 

  • Mehrsheikh, A., Bleeke, M., Brosillon, S., Laplanche, A., & Roche, P. (2006). Investigation of the mechanism of chlorination of glyphosate and glycine in water. Water Research, 40(16), 3003–3014.

    Article  CAS  Google Scholar 

  • Na, C., & Olson, T. (2004). Stability of cyanogen chloride in the presence of free chlorine and monochloramine. Environmental Science and Technology, 38(22), 6037–6043.

    Article  CAS  Google Scholar 

  • Power, N. K., & Nagy, A. L. (1999). Relationship between bacterial regrowth and some physical and chemical parameters within Sydney's drinking water distribution system. Water Research, 33(3), 741–750.

    Article  CAS  Google Scholar 

  • Qiang, Z., & Adams, C. (2004). Determination of monochloramine formation rate constants with stopped-flow spectrometry. Environmental Science and Technology, 38, 1435–1444.

    Article  CAS  Google Scholar 

  • Rajagopal, S., van der Velde, G., & Jenner, H. A. (2002). Effects of low-level chlorination on zebra mussel, Dreissena polymorpha. Water Research, 36(12), 3029–3034.

    Google Scholar 

  • Shang, C., & Blatchley, E. R. (1999). Differentiation and quantification of free chlorine and inorganic chloramines in aqueous solution by MIMS. Environmental Science and Technology, 33(13), 2218–2223.

    Article  CAS  Google Scholar 

  • Tao, H., Chen, Z. L., Li, X., Yang, Y. L., & Li, G. B. (2008). Salicylate-spectrophotometric determination of inorganic monochloramine. Analytica Chimica Acta, 615(2), 184–190.

    Article  CAS  Google Scholar 

  • Zhang, W. D., & DiGiano, A. F. (2002). Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors. Water Research, 36(6), 1469–1482.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (NSFC) Award No. 50908074 and the Fundamental Research Funds for the Central Universities Award No. 2009B17314.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, T., Feng, X., Wei, C. et al. The Effects of Glycine on Breakpoint Chlorination and Chlorine Dosage Control Methods for Chlorination and Chloramination Processes in Drinking Water. Water Air Soil Pollut 224, 1686 (2013). https://doi.org/10.1007/s11270-013-1686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1686-y

Keywords

Navigation