Skip to main content

Chlorine for Water Disinfection: Properties, Applications and Health Effects

  • Chapter
  • First Online:
CO2 Sequestration, Biofuels and Depollution

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 5))

Abstract

Chlorine compounds are chemicals commonly used as oxidizing agents for drinking-water disinfection and water treatment . Chlorine (Cl) is an halogen element having 7 electrons on its last electronic layer. To reach the stability of 8 electrons chlorine has a tendency to add an electron. This tendency to add an electron gives chlorine special oxidizing properties. Chlorine indeed kills harmful microorganisms, has decolourization properties, and oxidize and modify organic molecules. Chlorine can be used as a bleaching agent and to fight against biological fouling in cooling systems. Chlorine popularity is not only due to lower cost, but also to its higher oxidizing potential, which provides a minimum level of residual chlorine throughout the distribution system and protects against microbial recontamination with a remarkable remnant effect. Chlorine is used in different forms: gaseous, e.g. Cl2 and ClO2, liquid, e.g. NaClO, HClO, and NH2Cl, and solid, e.g. Ca (OCl)2. Chlorine is industrially produced by electrolysis of aqueous sodium chloride (NaCl).

The application of chlorine to water treatment poses risks by producing by-products such as organochlorinated compounds. Disinfection by-products (DBPs) such as trihalomethanes, haloacetic acids, haloacetonitriles and haloketones are formed when chlorine reacts with natural organic matter such as humic acids and phenols. Some organochlorinated compounds are endocrine disruptors involved in brain cancer, immune and reproductive system troubles, and feminization. Modern legislations in all countries impose environmental regulation and health quality standards that become more and more stringent. Emerging regulation limiting the concentration of by-products in drinking water has increased demands for alternative processes that remove organics before disinfection. Processes include coagulation with active carbon, flocculation, sedimentation, sand filtration. Altenrative disinfection is done by advanced oxidation processes including O3/H2O2, UV/O3, and UV/H2O2, membrane filtration and electrochemical disinfection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acero JL, Benitez FJ, Real FJ, Roldan G (2010) Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices. Water Res 44:4158–4170

    CAS  Google Scholar 

  • Aggazzotti G, Righi E, Fantuzzi G, Biasotti B, Ravera G, Kanitz S, Barbone F, Sansebastiano G, Battaglia MA, Leoni V, Fabiani L, Triassi M, Sciacca S (2004) Chlorination by-products (CBPs) in drinking water and adverse pregnancy outcomes in Italy. J Water Health 2:233–247

    CAS  Google Scholar 

  • Ahmed EA, Campbell GA, Jacob S (2005) Neurological impairment in fetal mouse brain by drinking water disinfectant byproducts. Neuro Toxicol 26:633–640

    CAS  Google Scholar 

  • Anderson AC, Reimers RS, Dekernion P (1982) A brief review of the current status of alternatives of chlorine disinfection of water. Am J Public Health 72:1290–1293

    CAS  Google Scholar 

  • Asami M, Oya M, Kosaka K (2009) A nationwide survey of NDMA in raw and drinking water in Japan. Sci Total Environ 407:3540–3545

    CAS  Google Scholar 

  • Ates N, Yilmaz L, Kitis M, Yetis U (2009) Removal of disinfection by-product precursors by UF and NF membranes in low-SUVA waters. J Membr Sci 328:104–112

    CAS  Google Scholar 

  • Badawy MI, Gad-Allah TA, Ali MEM, Yoon Y (2012) Minimization of the formation of disinfection by-products. Chemosphere 89:235–240

    CAS  Google Scholar 

  • Barnett DA, Guevremont R, Purves RW (1999) Determination of parts-per-trillion levels of chlorate, bromate and iodate by electrospray ionization/high-field asymmetric waveform ion mobility spectrometry/mass spectrometry. Appl Spectrosc 53:1367–1374

    CAS  Google Scholar 

  • Barrett S, Hwang C, Guo Y, Andrews SA, Valentine R (2003) Occurrence of NDMA In: Drinking water: a North American survey, 2001–2002, Proceedings of AWWA annual conference, Anaheim, CA

    Google Scholar 

  • Bolto B, Dixon D, Eldridge R (2004) Ion exchange for the removal of natural organic matter. React Funct Polym 60:171–182

    CAS  Google Scholar 

  • Bond T, Goslan EH, Jefferson B, Roddick F, Fan L, Parsons SA (2009) Chemical and biological oxidation of NOM surrogates and effect on HAA formation. Water Res 43:2615–2622

    CAS  Google Scholar 

  • Bove F, Shim Y, Zeitz P (2002) Drinking water contaminants and adverse pregnancy outcomes: a review. Environ Health Perspect 110:61–74

    Google Scholar 

  • Boyd JM, Charrois JWA, Hofmann R, Hrudey SE (2012) NDMA and other N-nitrosamines–health risk assessment and management. Disinfection by products and human health. Chapter 7. IWA Publishing, Australia

    Google Scholar 

  • Brenner S (2013) Aluminum may mediate Alzheimer’s disease through liver toxicity, with aberrant hepatic synthesis of ceruloplasmin and ATPase7B, the resultant excess free copper causing brain oxidation, beta-amyloid aggregation and Alzheimer disease. Med Hypotheses 80:326–327. doi: 10.1016/j.mehy.2012.11.036

    CAS  Google Scholar 

  • Bull RJ, Rice G, Teuschler L, Feder P (2009) Chemical measures of similarity among disinfection by-product mixtures. J Toxicol Environ Health 72:482–493

    CAS  Google Scholar 

  • Canadian Cancer Society (2009) Canadian cancer statistics, national cancer institute of Canada 2004–2009. Toronto, pp 835–2976

    Google Scholar 

  • Cedergren MI, Selbing AJ, Lofman O, Bengt AJ (2002) Chlorination by-products and nitrate in drinking water and risk for congenital cardiac defects. Environ Res 89:124–130

    CAS  Google Scholar 

  • Chiang PC, Chang EE, Chang PC, Huang CP (2009) Effects of pre-ozonation on the removal of THM precursors by coagulation. Sci Total Environ 21:5735–5742

    Google Scholar 

  • Chin A, Bérubé PR (2005) Removal of disinfection by-product precursors with ozone-uv advanced oxidation process. Water Res 39:2136–2144

    CAS  Google Scholar 

  • Choi J, Valentine RL (2002) Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Res 36:817–824

    CAS  Google Scholar 

  • Chong MN, Jin B, Laera G, Saint CP (2011) Evaluating the photodegradation of carbamazepine in a sequential batch photoreactor system: impacts of effluent organic matter and inorganic ions. Chem Eng Res 174:595–602

    CAS  Google Scholar 

  • Choo KW, Tao R, Kim MJ (2008) Use of photocatalytic membrane reactor for the removal of natural organic matter in water: effect of photoinduced desorption and ferrihydrite adsorption. J Membr Sci 322:368–374

    CAS  Google Scholar 

  • Chowdhury S, Champagne P, Husain T (2007) Fuzzy risk-based decision-making approach for selection of drinking water disinfectants. J Water Supply Res Technol (Aqua) 56:75–93

    CAS  Google Scholar 

  • Chowdhury S, Rodriguez MJ, Sadiq R (2011) Disinfection byproducts in Canadian provinces: associated cancer risks and medical expenses. J Hazard Mater 187:574–584

    CAS  Google Scholar 

  • Chu WH, Gao NY, Deng Y, Templeton MR, Yin DQ (2011) Formation of nitrogenous disinfection by-products from pre-chloramination. Chemosphere 85:1187–1191

    CAS  Google Scholar 

  • Chu W, Gao N, Krasner SW, Templeton MR, Yin D (2012) Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water. Environ Pollut 161:8–14

    CAS  Google Scholar 

  • Clark RM, Adams JQ, Lykins BW Jr (1994) DBP control in drinking water: cost and performance. J Environ Eng ASCE 120:759–781

    CAS  Google Scholar 

  • Clark RM, Adams JQ, Sethi V, Sivaganesan M (1998) Control of microbial contaminants and disinfect ion by-products for drinking water in the US: cost and performance. J Water SRT-Aqua 47:255–265

    CAS  Google Scholar 

  • Comninellis C, Kapalka A, Malato S, Parsons SA, Poulios I, Mantzavinos D (2008) Advanced oxidation processes for water treatment: advances and trends for R & D. J Chem Technol Biotechnol 83:769–776

    CAS  Google Scholar 

  • Costet N, Villanueva CM, Jaakkola JJK, Kogevinas M, Cantor KP, King WD, Lynch CF Nieuwenhuijsen MJ, Cordier S (2011) Water disinfection by-products and bladder cancer: is there a European specificity? A pooled and meta-analysis of European case–control studies. Occup Environ Med 68:379–385

    CAS  Google Scholar 

  • Daghrir R, Drogui P, Blais JF, Mercier G (2012) Hybrid process combining electrocoagulation and electrooxidation processes for the treatment of restaurant wastewaters. J Environ Eng 138:1146–1156

    CAS  Google Scholar 

  • DeAngelo AB, George MH, Kilburn SR, Moore TM, Wolf DC (1998) Carcinogenicity of potassium bromate administered in the drinking water to male B6C3F1 mice and F344/N rats. Toxicol Pathol 26:587–594

    CAS  Google Scholar 

  • Deborde M, Von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment—kinetics and mechanisms: a critical review. Water Res 42:13–51

    CAS  Google Scholar 

  • Dobrovic S, Juretic H, Ruzinski N (2007) Photodegradation of natural organic matter in water with UV irradiation at 185 and 254 nm: Importance of hydrodynamic conditions on the decomposition rate. Sep Sci Technol 42:1421–1432

    CAS  Google Scholar 

  • Doré M (1989) Chimie des oxydants et traitement des eaux. TEC. DOC. LAVOISIER, Paris, p 505

    Google Scholar 

  • Drogui P, Blais JF, Mercier G (2007) Review of electrochemical technologies for environmental applications. Recent Pat Eng 1:257–272

    CAS  Google Scholar 

  • Ells B, Barnett DA, Purves RW, Guevremont R (2000) Detection of nine chlorinated and brominated haloacetic acids at part-per-trillion levels using ESI-FAIMS-MS. Anal Chem 72:4555–4559

    CAS  Google Scholar 

  • Epstein DL, Nolen GA, Randall JL, Christ SA, Read EJ, Stober JA et al (1992) Cardiopathic effects of dichloroacetate in the fetal Long-Evans rat. Teratology 46(3):225–235

    CAS  Google Scholar 

  • Farahbakhsh K, Svrcek C, Guest RK, Smith DW (2004) A review of the impact of chemical pre-treatment on low-pressure water treatment membranes. J Environ Eng Sci 3:237–253

    CAS  Google Scholar 

  • Gabryelski W, Wu F, Froese KL (2003) Comaprison of high-field asymmetric waveform ion mobility spectrometry with GC methods in analysis of haloacetic acids in drinking water. Anal Chem 75:2478–2486

    CAS  Google Scholar 

  • Gagnon GA, O’Leary KC, Volk CJ, Chauret C, Stover L, Andrews RC (2004) Comparative analysis of chlorine dioxide, free chlorine and chloramines on bacterial water quality in model distribution systems. J Environ Eng 130:1269–1279

    CAS  Google Scholar 

  • Gao B, Yue Q (2005) Effect of SO4 2–/Al3+ ratio and OH/Al3+ value on the characterization of coagulant poly-aluminum-chloride-sulfate (PACS) and its coagulation performance in water treatment. Chemosphere 61:579–584

    CAS  Google Scholar 

  • Gerrity D, Mayer B, Ryu H, Crittenden J, Abbaszadegan M (2009) A comparison of pilot scale photocatalysis and enhanced coagulation for disinfection by-product mitigation. Water Res 43:1597–1610

    CAS  Google Scholar 

  • Glezer V, Harris B, Tal N, Iosefzon B, Lev O (1999) Hydrolysis of haloacetonitriles: linear free energy relationship, kinetics and products. Wtare Res 33:1938–1948

    CAS  Google Scholar 

  • Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment II: hybrid methods. Adv Environ Res 8:553–597

    CAS  Google Scholar 

  • Gopal K, Tripathy SS, Bersillon JL, Dubey SP (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140:1–6

    CAS  Google Scholar 

  • Goslan EH, Gurses F, Banks J, Parsons SA (2006) An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes. Chemosphere 65:1113–1119

    Google Scholar 

  • Goslan EH, Krasner SW, Bower M, Rocks SA, Holmes P, Levy LS, Parsons SA (2009) A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland. Water Res 43:4698–4706

    CAS  Google Scholar 

  • Government of Ontario (2006) Drinking water surveillance program (DWSP) summary report for 2000–2004 Personal communication with dave fellowes, ministry of the environment, Ontario, Canada

    Google Scholar 

  • Gray SR, Ritchie CB, Tran T, Bolto BA (2007) Effect of NOM characteristics and membrane type on microfiltration performance. Water Res 41:3833–3841

    CAS  Google Scholar 

  • Grellier J, Bennett J, Patelarou E, Smith RB, Toledano MB, Rushton L, Briggs DJ, Nieuwenhuijsen MJ (2010) Exposure to disinfection by-products, fetal growth, and prematurity: a systematic review and meta-analysis. Epidemiol 21:300–313

    Google Scholar 

  • HaitiLibre: Haiti Cholera Epidemic: Latest Assessment (2010) http://www.haitilibre.com/en/news-1725-haiti-cholera-epidemic-latestassessment-13-people-infected-and-confirmed-each-minute.html. Accessed April 2013

  • Hanigan D, Zhang J, Herckes P, Krasner SW, Chen C, Westerhoff P (2012) Adsorption of N-Nitrosodimethylamine precursors by powdered and granular activated carbon. Environ Sci Technol 46:12630–12639

    CAS  Google Scholar 

  • Hansen KMS, Zortea R, Piketty A, Vega SR, Andersen HR (2013) Photolytic removal of DBPs by medium pressure UV in swimming pool water. Sci Total Environ 443:850–856

    CAS  Google Scholar 

  • Health Canada (1995) A national survey of disinfection byproducts in Canadian drinking water (95-EHD-197), Environmental Health Directorate, Ottawa, Ontario

    Google Scholar 

  • Health Canada (2008) Guidelines for Canadian drinking water quality, prepared by the Federal-Provincial-Territorial committee on health and the Environment, 2008

    Google Scholar 

  • Hebert A, Forestier D, Lene D, Benanou D, Jacob S, Arfi C, Lambolez L, Levi Y (2010) Innovative method for prioritizing emerging disinfection by-products (DBPs) in drinking water on the basis of their potential impact on public health. Water Res 44:3147–3165

    CAS  Google Scholar 

  • Hillie T, Hlophe M (2007) Nanotechnology and the challenge of clean water. Nat Nanotech 2:663–664

    CAS  Google Scholar 

  • Huang X, Leal M, Li Q (2008) Degrdation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low pressure membranes. Water Res 42:1142–1150

    CAS  Google Scholar 

  • Huang H, Wu QY, Hu HY, Mitch WA (2012) Dichloroacetonitrile and Dichloroacetamide Can Form Independently during Chlorination and Chloramination of Drinking Waters, Model Organic Matters, and Wastewater Effluents. Environ Sci Technol 46:10624–10631

    CAS  Google Scholar 

  • Humbert H, Gallard H, Jacquemet V, Croué JP (2007) Combination of coagulation and ion exchange for the reduction of UF fouling properties of a high DOC content surface water. Water Res 41:3803–3811

    CAS  Google Scholar 

  • Humbert H, Gallarda H, Sutyb H, Croué J (2008) Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Res 42:1635–1643

    CAS  Google Scholar 

  • International Agency for research on Cancer (IARC) (1978) N-nitrosodimethylamine. In some N-nitroso compounds. IARC Monogr Eval Carcinog Risks Hum 17:125–175

    Google Scholar 

  • IRIS, The Integrated Risk Information System Online Database, US Environmental Protection Agency (2009) http://www.epa.gov/iris/subst/index.html

  • Ivancev VT, Dalmacijam B, Tamas Z, Karlovic E (2002) The effect of different drinking water treatment processes on the rate of chloroform formation in the reactions of natural organic matter with hypochlorite. Water Res 33:3715–3722

    Google Scholar 

  • Kabsch-Korbutowicz M (2005) Application of ultrafiltration integrated with coagulation for improved NOM removal. Desalination 174:13–22

    CAS  Google Scholar 

  • Karpinska AM, Boaventura RAR, Vilar VJP, Bilyk A, Molczan M (2012) Applicability of MIEX DOC process for organics removal from NOM laden water. Environ Sci Pollut Res. doi:10.1007/s11356–012-1334-x

    Google Scholar 

  • Kasprzyk-Hordern B, Ziolek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B 46:639–669

    CAS  Google Scholar 

  • Kim J, Kang B (2008) DBPs removal in GAC filter-adsorber. Water Res 82:145–152

    Google Scholar 

  • Kim HC, Lee S (2006) Pump diffusion flash mixing (PDFM) for improving coagulation process in drinking water treatment. Sep Purif Technol 52:117–125

    CAS  Google Scholar 

  • Kim I, Tanaka H (2009) Photodegradation characteristics of PPCPs in water with UV treatment. Environ Int 35:793–802

    CAS  Google Scholar 

  • Kim HC, Hong JH, Lee S (2006) Fouling of microfiltration membranes by natural organic matter after coagulation treatment: a comparison of different initial mixing conditions. J Membr Sci 283:266–272

    CAS  Google Scholar 

  • King WD, Dodds L, Allen AC (2000) Relation between stillbirths and specific chlorinated byproducts in public water supplies. Environ Health Perspect 108:883–886

    CAS  Google Scholar 

  • Kitis M, Kaplan SS (2007) Advanced oxidation of natural organic matter using hydrogen peroxide and iron-coated pumice particles. Chemosphere 68:1846–1853

    CAS  Google Scholar 

  • Krasner SW, McGuire MJ, Jacangelo JG, Patania NL, Reagan KM, Aieta EM (1989) The occurrence of disinfection by-products in US drinking water. J Am Water Works Assoc 81:41–53

    Google Scholar 

  • Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn R, Sclimenti MJ, Onstad GD, Thruston AD Jr (2006) Occurrence of a new generation of disinfection byproducts. Environ Sci Technol 40:7175–7185

    CAS  Google Scholar 

  • Kruithof JC, Kamp PC, Martijin BJ (2007) UV/H2O2 treatment: a practical solution for organic contaminant control and primary disinfection. Ozone Sci Eng 29:273–280

    CAS  Google Scholar 

  • Lamsal R, Montreuil KR, Kent FC, Walsh ME, Gagnon GA (2012) Characterization and removal of natural organic matter by an integrated membrane system. Desalination 303:12–16

    CAS  Google Scholar 

  • Le-Clech P, Lee EK, Chen V (2006) Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Res 40:323–330

    CAS  Google Scholar 

  • Lee S, Kim S, Cho J, Hoek EMV (2007) Natural organic matter fouling due to foulant–membrane physicochemical interactions. Desalination 202:377–384

    CAS  Google Scholar 

  • Legay C, Rodriguez MJ, Sadiq R, Sérodes JB, Levallois P, Proulx F (2011) Spatial variations of human health risk associated with exposure to chlorination by-products occurring in drinking water. J Environ Manage 92:892–901

    CAS  Google Scholar 

  • Legube B, Parinet B, Berne F, Croue JP (2002) Bromate surveys in French drinking water works. Ozone Sci Eng J Int Ozone Assoc 24:293–304

    CAS  Google Scholar 

  • Lei H, Marinas BJ, Minear RA (2004) Bromamine decomposition kinetics in aqueous solutions. Environ Sci Technol 38:2111–2119

    CAS  Google Scholar 

  • Liang L, Singer PC (2003) Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environ Sci Technol 37:2920–2928

    CAS  Google Scholar 

  • Lin YL, Chiang PC, Chang EE Removal of small trihalomethane precursors from aqueous solution by nano filtration. J Hazard Mater 146:20–29

    Google Scholar 

  • Luo Q, Wang D, Wang Z (2012) Occurences of nitrosamines in chlorinated and chloraminated drinking water in three representative cities, China. Sci Total Environ 437:219–225

    CAS  Google Scholar 

  • Matilainen A, Sillanpää M (2010) Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere 80:351–365

    CAS  Google Scholar 

  • Mesdaghinia A, Rafiee MT, Vaezi F, Mahvi AH (2005) Evaluation of ferric chloride and alum efficiencies in enhanced coagulation for TOC removal and related residual metal concentrations. Iran J Environ Health Sci Eng 2:189–194

    CAS  Google Scholar 

  • Mijatovid I, Matogid M, Cerneha BH, Bratulid D (2004) Removal of natural organic matter by ultrafiltration and nanofiltration for drinking water production. Desalination 169:223–230

    Google Scholar 

  • Mills AL, Alexander M (1976) N-Nitrosamine formation by cultures of several microorganisms. Appl Environ Microbiol 31:892–895

    CAS  Google Scholar 

  • Mills CJ et al (1998) Health risks of drinking water chlorination by-products. Chronic Dis Can 19:91–102

    CAS  Google Scholar 

  • Molnar J, Agbaba J, Dalmacija B, Klašnja M, Watson M, Kragulj M (2012) The effects of ozonation and catalytic ozonation on the removal of natural organic matter from groundwater. J Environ Eng 138:804–808

    CAS  Google Scholar 

  • Moncayo-Lasso A, Pulgarin C, Benitez N (2008) Degradation of DBPs’ precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor. Water Res 42:4125–4132

    CAS  Google Scholar 

  • Muellner MG, Wagner ED, McCalla K, Richardson SD, Woo YT, Plewa MJ (2007) Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environ Sci Technol 4:645–651

    Google Scholar 

  • Muller-Pillet V, Joyeux M, Ambroise D, Hartemann P (2000) Genotoxic activity of five haloacetonitriles: comparative investigations in the single cell gel electrophor1esis (comet) assay and the Ames-fluctuation test. Environ Mol Mutagen 36:52–58

    CAS  Google Scholar 

  • Murray CA, Parsons SA (2004) Removal of NOM from drinking water: Fenton’s and photo-Fenton’s processes. Chemosphere 54:1017–1023

    CAS  Google Scholar 

  • Murray CA, Parsons SA (2006) Preliminary laboratory investigation of disinfection by-product precursor removal using an advanced oxidation process. Water Environ J 20:123–129

    CAS  Google Scholar 

  • Murray CA, Goslan EH, Parsons SA (2007) TiO2/UV: single stage drinking water treatment for nom removal. J Environ Eng Sci 6:311–317

    CAS  Google Scholar 

  • Najm I, Trussell RR (2001) NDMA formation in water and wastewater. J Am Water Works Assoc 93:92–99

    Google Scholar 

  • Nakajima N, Nakano T, Harada F, Taniguchi H, Yokoyama I, Hirose J, Daikoku E, Sano K (2004) Evaluation of disinfective potential of reactivated free chlorine in pooled tap water by electrolysis. J Microbiol Methods 57:163–173

    CAS  Google Scholar 

  • Nieuwenhuijsen MJ, Taledano MB, Eaton NE, Fawell J, Elliott P (2000) Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57:73–85

    CAS  Google Scholar 

  • Nkambule TI, Kuvarega AT, Krause RWM, Haarhoff J, Mamba BB (2012) Synthesis and characterisation of Pd-modified N-doped TiO2 for photocatalytic degradation of natural organic matter (NOM) fractions. Environ Sci Pollut Res 16:4120–4132

    Google Scholar 

  • Norton CD, Le chevallier MW (1997) Chloramination: its effect on distribution system water quality. J Am Water Works Assoc 89:66–77

    CAS  Google Scholar 

  • Oh Jl, Lee SH (2005) Influence of streaming potential on flux decline of microfiltration with in-line rapid pre-coagulation process for drinking water production. J Membr Sci 254:39–47

    CAS  Google Scholar 

  • Olivier BG (1983) Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors. Environ Sci Technol 17:80–83

    Google Scholar 

  • Ouhoummane N, Levallois P, Gingras S (2004) Thyroid function of newborns and exposure to chlorine dioxide by-products. Arch Environ Health 59:582–587

    CAS  Google Scholar 

  • Parsons S (2004) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, London

    Google Scholar 

  • Pera-Titus M, Garcia-Molina V, Banos MA, Giménez J, Esplugas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B 47:219–256

    CAS  Google Scholar 

  • Pereira VJ, Linden KG, Weinberg HS (2007) Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Res 41:4413–4423

    CAS  Google Scholar 

  • Planas C, Palacios O, Ventura F, Rivera J, Caixach J (2008) Analysis of nitrosamines in water by automated spe and isotope dilution gc/hrms-occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent. Talanta 76:906–913

    CAS  Google Scholar 

  • Plewa MJ, Kargalioglu Y, Vankerk D, Minear RA, Wagner ED (2002) Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environ Mol Mutagen 40:134–142

    CAS  Google Scholar 

  • Plewa MJ, Wagner ED, Jazwierska P, Richardson SD, Chen P H, McKague AB (2004) Halonitromethane drinking water disinfection by products: chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environ Sci Technol 38:62–68

    CAS  Google Scholar 

  • Plewa MJ, Wagner ED, Muellner MG, Kang-Mei Hsu KM, Richardson SD (2008) Comparative mammalian cell toxicity of N-DBPs and C-DBPs. ACS Symp Ser 995:36–50

    CAS  Google Scholar 

  • Prarat P, Ngamcharussrivichai C, Khaodhiar S, Punyapalakul P (2013) Removal of haloacetonitriles in aqueous solution through adsolubilization process by polymerizable surfactant-modified mesoporous silica. J Hazard Mater 244–245:151–159

    Google Scholar 

  • Qin F, Zhao YY, Zhao Y, Boyd JM, Zhou W, Li XF (2010) A toxic disinfection by-product, 2,6-dichloro-1,4-benzoquinones, identified in drinking water. Angew Chem Int Ed 49:790–792

    CAS  Google Scholar 

  • Reckhow DA, MacNeill AL, Platt TL, McClellan JN (2001) Formation and degradation of dichloroacetonitrile in drinking waters. J Water Suppl Res Technol AQUA 50:1–13

    CAS  Google Scholar 

  • Richardson SD (1998) Drinking water disinfection by-products. In: Meyers RA (ed) The encyclopedia of environmental analysis and remediation, vol 3. Wiley, New York, pp 1398–1421

    Google Scholar 

  • Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. Trac-Trend Anal Chem 22(10):666–684

    CAS  Google Scholar 

  • Richardson SD, Postigo C (2012) Drinking water disinfection by-products. Emerg Org Contam Hum Health Hand Environ Chem 93–137

    Google Scholar 

  • Richardson SD, Fasano F, Ellington JJ, Crumley FG, Buettner KM, Evans JJ, Blount BC, Silva LK, Waite TJ, Luther GW, Mckague AB, Miltner RJ, Wagner ED, Plewa PJ (2008) Occurrences and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environ Sci Technol 42:8330–8338

    CAS  Google Scholar 

  • Richardson SD, DeMarini DM, Kogevinas M, Fernandez P, Marco E, Lourencetti C, Ballesté C, Heederick D, Meliefste K, Bruce McKague A, Marcos R, Fon-Ribera L, Grimalt JO, Villanueva CM (2010) What’s in the pool? A comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ Health Perspect 118:1523–1530

    CAS  Google Scholar 

  • Righi E, Bechtold P, Tortorici D, Lauriola P, Calzolari E, Astolfi G, Nieuwenhuijsen MJ, Fantuzzi G, Aggazzotti G (2012) Trihalomethanes, chlorite, chlorate in drinking water and risk of congenital anomalies: a population-based case-control study in Northern Italy. Environ Res 116:66–73

    CAS  Google Scholar 

  • Rizzo L, Belgiorno V, Gallo M, Meriç S (2005) Removal of THM precursors from a high-alkaline surface water by enhanced coagulation and behaviour of THMFP toxicity on D. magna. Desalination 176:177–188

    CAS  Google Scholar 

  • Rizzo L, Di Gennaro A, Gallo M, Belgiorno V (2008) Coagulation/chlorination of surface water: a comparison between chitosan and metal salts. Sep Purif Technol 62:79–85

    CAS  Google Scholar 

  • Sadiq R, Rodriguez MJ (2004) Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ 321:21–46

    CAS  Google Scholar 

  • Sanly, Lim M, Chiang K, Amal R, Fabris R, Chow C, Drikas M (2007) A study on the removal of humic acid using advanced oxidation process. Sep Sci Technol 42:1391–1404

    Google Scholar 

  • Seidel CJ, McGuire MJ, Summers RS, Via S (2005) Have utilities switched to chloramines? J Am Water Works Assoc 97:87–97

    CAS  Google Scholar 

  • Selcuk H, Bekbolet M (2008) Photocatalytic and photoelectrocatalytic humic acid removal and selectivity of TiO2 coated photo-anode. Chemosphere 73:854–858

    CAS  Google Scholar 

  • Selcuk H, Rizzo L, Nikolaou AN, Meric S, Belgiorno V, Bekbolet M (2007) DBPs formation and toxicity monitoring in different origin water treated by ozone and alum/PAC coagulation. Desalination 210:31–43

    CAS  Google Scholar 

  • Shah AD, Dotson AD, Linden KG, Mitch WA (2011) Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water. Environ Sci Technol 45:3657–3664

    CAS  Google Scholar 

  • Shengji X, Xing L, Ji Y, Bingzhi D, Juanjuan Y (2008) Application of membrane techniques to produce drinking water in China. Desalination 222:497–501

    Google Scholar 

  • Siddiqui MS, Amy GL, Murphy BD (1997) Ozone enhanced removal of natural organic matter from drinking water sources. Water Res 31:3098–3106

    CAS  Google Scholar 

  • Simate GS, Iyuke SE, Ndlovu S, Heydenrych M, Walubita LF (2012) Human health effects of residual carbon nanotubes and traditional water treatment chemicals in drinking water. Environ Int 39:38–49

    CAS  Google Scholar 

  • Singer P (1994) Control of disinfection by products in drinking water. J Environ Eng 120:727–744

    CAS  Google Scholar 

  • Singer PC, Bilyk K (2002) Enhanced coagulation using a magnetic ion exchange resin. Water Res 36:4009–4022

    CAS  Google Scholar 

  • Smith MK, Randall JL, Read EJ, Stober JA. (1992) Developmental toxicity of dichloroacetate in the rat. Teratology 46:217–223

    CAS  Google Scholar 

  • Stuart B, Zhanj L, Wang S (2000) Quenching of chlorination disinfection byproducts formulation in drinking water by hydrogen peroxide. Water Res 34:1652–1658

    Google Scholar 

  • Tan Y, Kilduff JE, Kitis M, Karanfil T (2005) Dissolved organic matter removal and disinfection byproduct formation control using ion exchange. Desalination 176:189–200

    CAS  Google Scholar 

  • Taniguchi M, Kilduff JE, Belfort G (2003) Modes of Natural Organic Matter Fouling during Ultrafiltration. Environ Sci Technol 37:1676–1683

    CAS  Google Scholar 

  • Tardiff RG, Carson ML, Ginevan ME (2006) Updated weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products. Regul Toxicol Pharmacol 45:185–205

    CAS  Google Scholar 

  • Tian C, Liu R, Guo T, Liu H, Luo Q, Qu J (2013) Chlorination and chloramination of high bromide natural water: DBPs species transformation. Sep Purif Technol 102:86–93

    CAS  Google Scholar 

  • Toor R, Mohseni M (2007) UV-H 2 O 2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water. Chemosphere 66:2087–2095

    CAS  Google Scholar 

  • Trofe TW, Inman GW Jr, Johnson JD (1980) Kinetics of monochloramine decomposition in the presence of bromide. Environ Sci Technol 14:544–549

    CAS  Google Scholar 

  • USEPA (1979) Methods for chemical analysis of waters and wastes. US Environmental Protection Agency, Washington

    Google Scholar 

  • USEPA (1997) Mercury emissions from the disposal of fluorescent lamps. Final report. Washington:1v. http://www.epa.gov/epaoswer/hazwaste/id/merc-emi/merc-pgs/merc-rpt.pdf. Accessed April 2013

  • USEPA (1998) Environmental protection agency. 40 CFR Parts 9, 141, and 142. National primary drinking water regulations: interim enhanced surface water treatment; final rule. Federal Regist 63:69398–69476

    Google Scholar 

  • USEPA (2003) National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts (D/DBP). Final rule 2003, 68, 159

    Google Scholar 

  • USEPA (2006) National primary drinking water regulations: stage 2 disinfectants and disinfection byproducts rule: final rule. Federal Regist 71(2):387–493

    Google Scholar 

  • Uyak V, Toroz I (2007) Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply. J Hazard Mater 149:445–451

    CAS  Google Scholar 

  • Uyguner CS, Suphandag SA Kerc A, Bekbolet M (2007) Evaluation of adsorption and coagulation characteristics of humic acids preceded by alternative advanced oxidation techniques. Desalination 2010:183–193

    Google Scholar 

  • Villanueva CM, Cantor KP, Cordier S, Jaakkola JJ, King WD, Lynch CF, Porru S, Kogevinas M (2004) Disinfection by products and bladder cancer: a pooled analysis. Epidemiology 15:357–367

    Google Scholar 

  • Villanueva CM, Castano-Vinyals G, Moreno V, Carrasco-Turigas G, Aragonés N, Boldo E, Ardanaz E, Toledo E, Altzibar JM, Zaldua I, Azpiroz L, Goni F, Tardon A, Molina AJ, Martin V, Lopez-Rojo C, Jiménez-Moleon JJ, Capelo R, Gomez-Acebo I, Peiro R, Ripoll M, Garcia-Lvedan E, Nieuwenhujsen MJ, Rantakokko P, Goslan EH, Pollàn M, Kogevinas M (2012) Concentrations and correlations of disinfection by-products in municipal drinking water from an exposure assessment perspective. Environ Res 114:1–11

    CAS  Google Scholar 

  • Vora JJ, Chauhan SK, Parmar KC, Vasava SB, Sharma S, Bhutadiya LS (2009) Kinetic Study of application of ZnO as a photocatalyst in heterogeneous medium. J Chem 6:531–536

    Google Scholar 

  • Wang GS, Liao CH, Chen HW, Yang HC (2006) Characteristics of natural organic matter degradation in water by UV/H2O2 treatment. Environ Technol 27:277–287

    CAS  Google Scholar 

  • WHO (World Health Organization) (2000) Disinfectants and disinfectant by-products. WHO (World Health Organization), Geneva

    Google Scholar 

  • WHO (World Health Organization) (2002) Water and sanitation, facts and figures. http://www.who.int/watersanitationhealth/General/factsandfigures.htm. Accessed April 2013

  • Wigle DT (1998) Safe drinking water: a public health challenge. Chronic Dis Can 19:103–107

    CAS  Google Scholar 

  • Wiszniowski J, Robert D, Surmacz-Gorska D, Miksch K, Weber JV (2002) photocatalytic decomposition of humic acids on TiO2 part I: Discussion of adsorption and mechanism. J Photochem Photobiol A 152:267–273

    CAS  Google Scholar 

  • Yan M, Wang D, Ma X, Ni J, Zhang H (2010) THMs precursor removal by an integrated process of ozonation and biological granular activated carbon for typical Northern China water. Sep Purif Technol 72:263–268

    CAS  Google Scholar 

  • Yang CY, Cheng BH, Tsai SS, Wu TN, Lin MC, Lin KC (2000) Association between chlorination of drinking water and adverse pregnancy outcome in Taiwan. Environ Health Perspect 108:765–768

    CAS  Google Scholar 

  • Yao P, Choo K, Kim M (2009) A hydridized photocatalysis-microfiltration system with iron oxide-coated membranes for the removal of natural organic matter in water treatment: effects of iron oxide layers and colloids. Water Res 43:4238–4248

    CAS  Google Scholar 

  • Yuan YZ, Liu X, Boyd JM, Qin F, Li J, Li XF (2009) Identification of N-nitroamines in treated drinking water using nanoelectrospray ionization high field asymmetric waveform ion mobility spectrometry with quadrupole time of flight mass spectrometry. J Chromatogr Sci 47:92–96

    Google Scholar 

  • Zaviska F, Drogui P, Pablo G (2012) Statistical optimization of active chlorine production from a synthetic saline effluent by electrolysis. Desalination 296:16–23

    CAS  Google Scholar 

  • Zhao YY, Boyd J, Hrudey SE, Li XF (2006) Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environ Sci Technol 40:7636–7641

    CAS  Google Scholar 

  • Zwiener C, Richardson SD (2005) Drinking water disinfection by-product analysis by LC/MS and LC/MS/MS. Trends Anal Chem 24:613–621

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Drogui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Drogui, P., Daghrir, R. (2015). Chlorine for Water Disinfection: Properties, Applications and Health Effects. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) CO2 Sequestration, Biofuels and Depollution. Environmental Chemistry for a Sustainable World, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-11906-9_1

Download citation

Publish with us

Policies and ethics