Skip to main content

Advertisement

Log in

Optimization of Process Parameters for Removal of Arsenic Using Activated Carbon-Based Iron-Containing Adsorbents by Response Surface Methodology

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, arsenate removal by apricot stone-based activated carbon (IAC) modified with iron (oxy-hydr)oxides was carried out. For this purpose, hybrid adsorbents based on Fe2+-loaded activated carbon (IAC–Fe(II)) and Fe3+-loaded activated carbon (IAC–Fe(III)) were synthesized by precipitation method. A three-level, three-factor Box–Behnken experimental design combined with response surface methodology (RSM) was employed to find the optimum combination of process parameters for maximizing the As(V) adsorption capacity of activated carbon-based iron-containing hybrid adsorbent. Three important operation parameters, namely, initial pH of solution (3.0–7.0), temperature (25–65 °C), and initial As(V) concentration (0.5–8.5 mg L−1), were chosen as the independent variables, while the As(V) adsorption capacities of hybrid adsorbents were designated as dependent variables. Lack of fit test showed that the quadratic model provided the best fit to experimental data for both adsorbents with the highest coefficients of determination (R 2), adjusted R 2, and p-values for lack of fit. The standardized effects of the independent variables and their interactions were tested by analysis of variance and Pareto chart. The model F-values (F IAC–Fe(II)=330.39 and F IAC–Fe(III)=36.19) and R 2 values (R 2 IAC–Fe(II)=0.9977 and R 2 IAC–Fe(III)=0.9789) of second-order polynomial regression equations indicated the significance of the regression models. Optimum process conditions for As(V) adsorption onto IAC–Fe(II) were 63.68 °C, pH 3.10, and 8.4 mg L−1 initial arsenic concentration, while 25.22 °C, pH 3.07, and 8.28 mg L−1 initial As(V) concentration were found to be optimum conditions for IAC–Fe(III).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aksu, Z., & Gönen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry, 39, 599–613.

    Article  CAS  Google Scholar 

  • Altaş¸, L., Işık, M., & Kavurmacı, M. (2011). Determination of arsenic levels in the water resources of Aksaray Province, Turkey. Journal of Environmental Management, 92, 2182–2192.

    Article  Google Scholar 

  • Altundoğan, H. S., Altundoğan, S., Tümen, F., & Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud. Waste Management, 22, 357–363.

    Article  Google Scholar 

  • Baba, A., & Sözbilir, H. (2012). Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey. Chemical Geology, 334, 364–377.

    Article  CAS  Google Scholar 

  • Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters (pp (510–539)). New York: Wiley.

    Google Scholar 

  • Chang, S. H., Teng, T. T., & Ismail, N. (2011). Optimization of Cu(II) extraction from aqueous solutions by soybean-oil-based organic solvent using response surface methodology. Water, Air, & Soil Pollution, 217, 567–576.

    Article  CAS  Google Scholar 

  • Chen, W., Zou, J., Jang, M., Cannon, F.S., Dempsey, B.A. (2009). Arsenic removal by tailored activated carbon at ambient pH. Water Research Foundation and Arsenic Water Technology Parnership. http://www.waterrf.org/PublicReportLibrary/3163.pdf. Accessed 1 December 2012.

  • Cheng, H., Hu, Y., Luo, J., Xu, B., & Zhao, J. (2009). Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. Journal of Hazardous Materials, 165, 13–26.

    Article  CAS  Google Scholar 

  • Chowdhury, S. D., Yanful, E. K., & Pratt, A. R. (2011). Arsenic removal from aqueous solutions by mixed magnetite–maghemite nanoparticles. Environmental Earth Science, 64, 411–423.

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurrence and uses (2nd ed.). Weinheim: Wiley.

    Google Scholar 

  • De, D., Mandal, S. M., Bhattacharya, J., Ram, S., & Roy, S. K. (2009). Iron oxide nanoparticle-assisted arsenic removal from aqueous system. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances and Environmental Engineering, 44, 155–162.

    Article  CAS  Google Scholar 

  • Deliyanni, E., & Bandosz, T. J. (2011). Importance of carbon surface chemistry in development of iron–carbon composite adsorbents for arsenate removal. Journal of Hazardous Materials, 186, 667–674.

    Article  CAS  Google Scholar 

  • Dhoble, R. M., Lunge, S., Bhole, A. G., & Rayalu, S. (2011). Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As(III) in water. Water Research, 45, 4769–4781.

    Article  CAS  Google Scholar 

  • Engineering Statistic Handbook (2003). NIST/SEMATECH e-handbook of statistical methods, http://www.itl.nist.gov/div898/handbook. Accessed 14 December 2012.

  • Fierro, V., Muniz, G., Gonzalez-Sanchez, G., Ballinas, M. L., & Celzard, A. (2009). Arsenic removal by iron-doped activated carbons prepared by ferric chloride forced hydrolysis. Journal of Hazardous Materials, 168, 430–437.

    Article  CAS  Google Scholar 

  • Helfferich, F. (1995). Ion exchange. New York: Dover.

    Google Scholar 

  • Hongshao, Z., & Stanforth, R. (2001). Competitive adsorption of phosphate and arsenate on goethite. Environment Science Technology, 35, 4753–4757.

    Article  CAS  Google Scholar 

  • Hsu, J. C., Lin, C. J., Liao, C. H., & Chen, S. T. (2008). Evaluation of the multiple-ion competition in the adsorption of As(V) onto reclaimed iron-oxide coated sands by fractional factorial design. Chemosphere, 72, 1049–1055.

    Article  CAS  Google Scholar 

  • Jain, C. K., & Singh, R. D. (2012). Technological options for the removal of arsenic with special reference to South East Asia. Journal of Environmental Management, 107, 1–18.

    Article  CAS  Google Scholar 

  • Kundu, S., & Gupta, A. K. (2005). Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement (IOCC). Journal of Colloid and Interface Science, 290, 52–60.

    Article  CAS  Google Scholar 

  • Li, Y., Wang, J., Luan, Z., & Liang, Z. (2010). Arsenic removal from aqueous solution using ferrous based red mud sludge. Journal of Hazardous Materials, 177, 131–137.

    Article  CAS  Google Scholar 

  • Lizama, A. K., Fletcher, T. D., & Sun, G. (2011). Removal processes for arsenic in constructed wetlands. Chemosphere, 84, 1032–1043.

    Article  Google Scholar 

  • Ma, Y., & Lin, C. (2012). Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water. Journal of Hazardous Materials, 217–218, 238–245.

    Article  Google Scholar 

  • Malkoc, E., & Nuhoglu, Y. (2007). Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn of Quercus ithaburensis. Chemical Engineering and Processing, 46, 1020–1029.

    Article  CAS  Google Scholar 

  • Malkoc, E., Nuhoglu, Y., & Dundar, M. (2006). Adsorption of chromium(VI) on pomace-an olive oil industry waste: batch and column studies. Journal of Hazardous Materials, B138, 142–151.

    Article  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Meng, X., Bang, S., & Korfiatis, G. P. (2000). Effects of silicate, sulfate and carbonate on arsenic removal by ferric chloride. Water Research, 34(4), 1255–1261.

    Article  CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2007). A laboratory study for the treatment of arsenic, iron and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature. Journal of Hazardous Materials, 144, 420–426.

    Article  CAS  Google Scholar 

  • Mondal, P., Majumder, C. B., & Mohanty, B. (2008). Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. Journal of Hazardous Materials, 150, 695–702.

    Article  CAS  Google Scholar 

  • Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M., El Hamri, R., & Taitai, A. (2012). Removal of fluoride from aqueous solution by adsorption on apatitic tricalcium phosphate using Box–Behnken design and desirability function. Applied Surface Science, 258, 4402–4410.

    Article  CAS  Google Scholar 

  • Ozdemir, E., Duranoğlu, D., Beker, U., & Avcı, A. O. (2011). Process optimization for Cr(VI) adsorption onto activated carbons by experimental design. Chemical Engineering Journal, 172, 207–218.

    Article  CAS  Google Scholar 

  • Pakula, M., Walczyk, M., Biniak, S., & Swiatkowski, A. (2007). Electrochemical and FTIR studies of the mutual influence of lead(II) or iron(III) and phenol on their adsorption from aqueous acid solution by modified activated carbons. Chemosphere, 69, 209–219.

    Article  CAS  Google Scholar 

  • Payne, K. B., & Abdel-Fattah, T. M. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, 40, 723–749.

    Article  CAS  Google Scholar 

  • Pokhrel, D., & Viraraghavan, T. (2008). Arsenic removal from aqueous solution by iron oxide-coated biomass: common ion effects and thermodynamic analysis. Separation Science and Technology, 43, 3545–3562.

    Article  CAS  Google Scholar 

  • Puziy, A. M., Poddubnaya, O. I., Martınez-Alonso, A., Suarez-Garcıa, F., & Tascon, J. M. D. (2005). Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon, 43, 2857–2868.

    Article  CAS  Google Scholar 

  • Puziy, A. M., Poddubnaya, O. I., Martınez-Alonso, A., Castro-Muniz, A., Suarez-Garcıa, F., & Tascon, J. M. D. (2007). Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon, 45, 1941–1950.

    Article  CAS  Google Scholar 

  • Saha, B., Bainsa, R., & Greenwood, F. (2005). Physicochemical characterization of granular ferric hydroxide (GFH) for arsenic(V) sorption from water. Separation Science and Technology, 40, 2909–2932.

    Article  CAS  Google Scholar 

  • Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory: Preparation and characterization (2nd ed.). Germany: Wiley.

    Book  Google Scholar 

  • Selene, C. H., Chou, J., & De Rosa, C. T. (2003). Case studies—arsenic. International Journal of Hygiene and Environmental Health, 206, 381–386.

    Article  CAS  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International, 35, 743–759.

    Article  CAS  Google Scholar 

  • Shen, W., Li, Z., & Liu, Y. (2008). Surface chemical functional groups modification of porous carbon. Recent Patents on Chemical Engineering, 1, 27–40.

    Article  CAS  Google Scholar 

  • Shi, R., Jia, Y., & Wang, C. (2009). Competitive and cooperative adsorption of arsenate and citrate on goethite. Journal of Environmental Sciences, 21, 106–112.

    Article  CAS  Google Scholar 

  • Shin, S., Jang, J., Yoon, S. H., & Mochida, I. (1997). A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon, 35, 1739–1743.

    Article  CAS  Google Scholar 

  • Sullivan, C., Tyrer, M., Cheeseman, C. R., & Graham, N. J. D. (2010). Disposal of water treatment wastes containing arsenic-A review. Science of the Total Environment, 408, 1770–1778.

    Article  CAS  Google Scholar 

  • Swiatkowski, A., Pakula, M., Biniak, S., & Walczyk, M. (2004). Influence of the surface chemistry of modified activated carbon on its electrochemical behaviour in the presence of lead(II) ions. Carbon, 42, 3057–3069.

    Article  CAS  Google Scholar 

  • USEPA, United States Environmental Protection Agency. (2002). Arsenic Treatment Strategies for Soil, Waste and Water http://www.epa.gov/nrmrl/wswrd/dw/arsenic/pdfs/arsenic_report.pdf. Accessed 11 December 2012.

  • Vaughan, R. L., & Reed, B. E. (2005). Modeling As(V) removal by a iron oxide impregnated activated carbon using the surface complexation approach. Water Research, 39, 1005–1014.

    Article  CAS  Google Scholar 

  • Vitela-Rodriguez, A. V., & Rangel-Mendez, J. R. (2012). Arsenic removal by modified activated carbons with iron hydro(oxide) Nanoparticles. Journal of Environmental Management. doi:10.1016/j.jenvman.2012.10.004.

    Google Scholar 

  • Wang, S., & Mulligan, C. N. (2006). Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the Total Environment, 366, 701–721.

    Article  CAS  Google Scholar 

  • WHO, World Health Organization (2006). Guidelines for drinking-water quality, vol.1 Recommendations.

  • Williams, L. E., Barnett, M. O., Kramer, T. A., & Melville, J. G. (2003). Adsorption and transport of arsenic(V) in experimental subsurface systems. Journal of Environmental Quality, 32, 841–850.

    CAS  Google Scholar 

  • Yetilmezsoy, K., Demirel, S., & Vanderbei, R. J. (2009). Response surface modelling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. Journal of Hazardous Materials, 171, 551–562.

    Article  CAS  Google Scholar 

  • Zhang, Q. L., Lin, Y. C., Chen, X., & Gao, N. Y. (2007). A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water. Journal of Hazardous Materials, 148, 671–678.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Yildiz Technical University Scientific Research Projects Coordinating Department under Project No. 2011-01-04-DOP01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulker Beker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuna, A.Ö.A., Özdemir, E., Simsek, E.B. et al. Optimization of Process Parameters for Removal of Arsenic Using Activated Carbon-Based Iron-Containing Adsorbents by Response Surface Methodology. Water Air Soil Pollut 224, 1685 (2013). https://doi.org/10.1007/s11270-013-1685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1685-z

Keywords

Navigation