Skip to main content
Log in

Plant Responses to Arsenic: the Role of Nitric Oxide

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Arsenic (As) toxicity and the effects of nitric oxide (NO), supplied as sodium nitroprusside (SNP), were analyzed in Pistia stratiotes. The plants, which were grown in nutrient solution at pH 6.5, were exposed to four treatments for 24 h: control; SNP (0.1 mg L−1); As (1.5 mg L−1); and As + SNP (1.5 and 0.1 mg L−1). As accumulated primarily in the roots, indicating the low translocation factor of P. stratiotes. The As accumulation triggered a series of changes with increasing production of reactive oxygen intermediates and damage to cell membranes. The application of SNP was able to mitigate the harmful effects of As. This attenuation was probably due to the action of the SNP as an antioxidant, reducing the superoxide anion concentration, and as a signaling agent. Acting as a signal transducer, SNP increased the activity of enzymatic antioxidants (POX, CAT, and APX) in the leaves and stimulated the entire phytochelatins biosynthetic pathway in the roots (increased sulfate uptake and synthesis of amino acids, non-proteinthiols, and phytochelatins). The As also stimulated the phytochelatins biosynthesis, but this effect was limited, probably because plants exposed only to pollutant showed small increments in the sulfate uptake. Thus, NO also may be involved in gene regulation of sulfate carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arasimowicz, M., & Floryszak-Wieczorek, J. (2007). Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Science, 172, 876–887.

    Article  CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 267–287.

    Article  Google Scholar 

  • Boveris, A., Alvarez, S., Bustamante, J., & Valdez, L. (2002). Measurement of superoxide radical and hydrogen peroxide production in isolated cells and subcellular organelles. Methods in Enzymology, 105, 280–287.

    Article  Google Scholar 

  • Claassen, N., & Barber, S. A. (1974). A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiology, 54, 564–568.

    Article  CAS  Google Scholar 

  • Clark, R. B. (1975). Characterization of phosphatase of intact maize roots. Journal of Agricultural and Food Chemistry, 23, 458–460.

    Article  CAS  Google Scholar 

  • Gay, C., & Gebicki, J. M. (2000). A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydrogen peroxide assay. Analytical Biochemistry, 284, 217–220.

    Article  CAS  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: occurrence in higher plants. Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  • González, A., Cabrera, M. A., Henríquez, M. J., Contreras, R. A., Morales, B., & Moenne, A. (2012). Protein kinases in Ulva compressa exposed to copper excess. Plant Physiology, 158, 1451–1462.

    Article  Google Scholar 

  • Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinyl pyridine. Annual Review of Biochemistry, 106, 207–211.

    Article  CAS  Google Scholar 

  • Gusman, G. S., Oliveira, J. A., Farnese, F. S., & Cambraia, J. (2013). Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiologiae Plantarum, 2013(35), 1201–1209.

    Article  Google Scholar 

  • Hartley-Whitaker, J., Ainsworth, G., Vooijs, R., Ten, B. W., Schat, H., & Meharg, A. A. (2001). Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiology, 126, 299–306.

    Article  CAS  Google Scholar 

  • Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84, 450–455.

    Article  CAS  Google Scholar 

  • Leitner, M., Vandelle, E., Gaupels, F., Bellin, D., & Delledonne, M. (2009). Nitric oxide signaling in plant defence. Current Opinion in Plant Biology, 12, 451–458.

    Article  CAS  Google Scholar 

  • Leterrier, M., Airaki, M., Palma, J. M., Chaki, M., Barroso, J. B., & Corpas, F. J. (2012). Arsenic triggers the nitric oxide (NO) and S-nitrosolglutathione (GSNO) metabolism in Arabidopsis. Environmental Pollution, 166, 136–143.

    Article  CAS  Google Scholar 

  • Lima, A. L. S., DaMatta, F. M., Pinheiro, H. A., Totola, M. R., & Loureiro, M. E. (2002). Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions. Environmental and Experimental Botany, 47, 239–247.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Marin, A. R., Pezeshki, S. R., Masschelen, P. H., & Choi, H. S. (1993). Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic and photosynthesis in rice plants. Journal of Plant Nutrition, 16, 1532–4807.

    Article  Google Scholar 

  • Meharg, A. A., & Hartley-Whitaker, C. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154, 29–43.

    Article  CAS  Google Scholar 

  • Mishra, V. K., Tripathi, B. D., & Kim, K.-H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172, 749–754.

    Article  CAS  Google Scholar 

  • Mohammadi, M., & Karr, A. L. (2001). Superoxide anion generation in effective and ineffective soybean root nodules. Journal of Plant Physiology, 158, 1023–1029.

    Article  CAS  Google Scholar 

  • Moore, S., & Stein, W. H. (1948). Photometric ninhydron method for the use in the chromatography of amino acids. The Journal of Biological Chemistry, 176, 367–388.

    CAS  Google Scholar 

  • Mufarrege, M. M., Hadad, H. R., & Maine, M. A. (2010). Response of Pistia stratiotes to heavy metals (Cr, Ni and Zn) and phosphorous. Archives of Environment Contamination and Toxicology, 58, 53–61.

    Article  CAS  Google Scholar 

  • Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867–880.

    CAS  Google Scholar 

  • Nocito, F. F., Lancilli, C., Crema, B., Fourcroy, P., Davidian, J.-C., & Sacchi, G. A. (2006). Heavy metal stress and sulfate uptake in maize roots. Plant Physiology, 141, 1138–1148.

    Article  CAS  Google Scholar 

  • Peixoto, P. H. P., Cambraia, J., Sant’Anna, R., Mosquim, P. R., & Moreira, M. A. (1999). Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, 11, 137–143.

    CAS  Google Scholar 

  • Ruiz, H. A. (1985). Estimativa dos parâmetros cinéticos Km e Vmax por uma aproximação gráfico-matemática. Revista Ceres, 32, 79–84.

    CAS  Google Scholar 

  • Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein bound, and nonprotein sulphydryl groups in tissue whith Ellman’s reagent. Analytical Biochemistry, 25, 192–205.

    Article  CAS  Google Scholar 

  • Singh, R. P., & Agrawal, M. (2007). Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67, 2229–2240.

    Article  CAS  Google Scholar 

  • Singh, H. P., Kaur, S., Batish, D. R., Sharma, V. P., & Sharma, N. (2009). Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide, 20, 289–297.

    Article  CAS  Google Scholar 

  • Xiong, J., Fu, G., Tao, L., & Zhu, C. (2010). Roles of nitric oxide in alleviating heavy metal toxicity in plants. Archives of Biochemistry and Biophysics, 497, 13–20.

    Article  CAS  Google Scholar 

  • Yang, X., Feng, Y., He, Z., & Stoffella, P. J. (2005). Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 339–353.

    Article  CAS  Google Scholar 

  • Zhang, Z., & Qui, B. (2007). Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedumal fredii (Crassulaceae). Journal of Environmental Science, 19, 1311–1317.

    Article  CAS  Google Scholar 

  • Zhang, X., Uroic, M. K., Xie, W., Zhu, Y., Chen, B., McGrath, S., et al. (2012). Phytochelatins play a key role in arsenic accumulation and tolerance in aquatic macrophyte Wolffia globosa. Environmental Pollution, 165, 18–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Universidade Federal de Viçosa, CNPq, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juraci A. de Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farnese, F.S., de Oliveira, J.A., Gusman, G.S. et al. Plant Responses to Arsenic: the Role of Nitric Oxide. Water Air Soil Pollut 224, 1660 (2013). https://doi.org/10.1007/s11270-013-1660-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1660-8

Keywords

Navigation