Skip to main content

Advertisement

Log in

Arsenic Toxicity in Soybean Plants: Impact on Chlorophyll Fluorescence, Mineral Nutrition and Phytohormones

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Arsenic (As) is naturally present in soils and groundwater in agricultural areas, mainly in the form of arsenate (AsV) and arsenite (AsIII). It can enter soybean plants and decrease their yield and growth, therefore posing a serious problem. Our aim was to evaluate its effects on physiological events closely related to plant growth and the possible signaling pathways involved. Photosynthesis related parameters, gas exchange, mineral concentration, phytohormone content, and the expression of genes related to abscisic acid (ABA) and jasmonic acid (JA), were analyzed in soybean leaves and roots exposed to AsV and AsIII. A reduction in the CO2 assimilation rate was associated with decreased stomatal conductance, transpiration rate and intercellular CO2 concentration in treated plants. The alterations observed in the photochemical phase of the photosynthesis (OJIP -test) suggest a reduction in electron transport, mainly under AsV treatment. Arsenic also induced changes in NH4+, NO3, PO43−, Cl, SO42− and Na+ content in roots, while the mineral status seemed to remain unchanged in leaves. Surprisingly, ABA content was significantly lower in As-treated plants and so was the expression of GmPYL1 and GmbZIP1, genes potentially involved in ABA signaling. However, treatment caused an increase in JA content and a decrease in its precursor, 12-oxo-phytodienoic acid (OPDA), which suggests that JA could play a key role in regulating the response to the metalloid. These results build on those of previous studies and contribute to elucidating the complexity of As-triggered responses in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15(1):59

    PubMed Central  Google Scholar 

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69(4):451–462

    CAS  PubMed  Google Scholar 

  • Arbona V, Zandalinas SI, Manzi M, González-Guzmán M, Rodriguez PL, Gómez-Cadenas A (2017) Depletion of abscisic acid levels in roots of flooded Carrizo citrange (Poncirus trifoliata L. Raf. × Citrus sinensis L. Osb.) plants is a stress-specific response associated to the differential expression of PYR/PYL/RCAR receptors. Plant Mol Biol 93(6):623–640

    CAS  PubMed  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Wevar Oller AL, Agostini E (2016a) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    CAS  PubMed  Google Scholar 

  • Armendariz AL, Talano MA, Villasuso AL, Travaglia C, Racagni GE, Reinoso H, Agostini E (2016b) Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean. Plant Physiol Biochem 103:45–52

    CAS  PubMed  Google Scholar 

  • Armendariz AL, Talano MA, Nicotra MFO, Escudero L, Breser ML, Porporatto C, Agostini E (2019) Impact of double inoculation with Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39 on soybean plants grown under arsenic stress. Plant Physiol Biochem 138:26–35

    CAS  PubMed  Google Scholar 

  • Bai G, Yang DH, Zhao Y, Ha S, Yang F, Ma J, Gao XS, Wang ZM, Zhu JK (2013) Interactions between soybean ABA receptors and type 2C protein phosphatases. Plant Mol Biol 83:651–664

    CAS  PubMed  Google Scholar 

  • Cho SM, Kang BR, Kim JJ, Kim YC (2012) Induced systemic drought and salt tolerance by Pseudomonas chlororaphis O6 root colonization is mediated by ABA-independent stomatal closure. Plant Pathol J 28(2):202–206

    CAS  Google Scholar 

  • De Ollas C, Dodd IC (2016) Physiological impacts of ABA-JA interactions under water-limitation. Plant Mol Biol 91:641–650

    PubMed  PubMed Central  Google Scholar 

  • Dobrá J, Černý M, Štorchová H, Dobrev P, Skalák J, Jedelský PL, Lukšanová H, Gaudinová A, Pešek B, Malbeck J, Vanek T, Brzobohaty´ B, Vanková R, (2015) The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci 231:52–61

    PubMed  Google Scholar 

  • Gao SQ, Chen M, Xu ZS, Zhao CP, Li L, Xu HJ, Tang YM, Zhao X, Ma YZ (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553

    CAS  PubMed  Google Scholar 

  • Ghosh S, Saha J, Biswas AK (2013) Interactive influence of arsenate and selenate on growth and nitrogen metabolism in wheat (Triticum aestivum L.) seedlings. Acta Physiol Plant 35(6):1873–1885

    CAS  Google Scholar 

  • Giacometti R, Barneto J, Barriga LG, Sardoy PM, Balestrasse K, Andrade AM, Pagano EA, Alemano SA, Zavala JA (2016) Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack. Pest Manag Sci 72(8):1585–1594

    CAS  PubMed  Google Scholar 

  • Good D, Hubbs T, Irwin S (2016) Assessing South American soybean yield risks: estimating the yield trend. Farmdoc Daily 6:217

    Google Scholar 

  • Guimarães-Dias F, Neves-Borges AC, Conforte AJ, Giovanella-Kampmann L, Ferreira AVJ, Amorim RMS, Benevent MA, Lisei de Sá ME, Mesquita RO, Rodrigues FA, Nepomuceno AL, Romano E, Loureiro ME, Grossi-de-Sá MF, Alves-Ferreira M (2016) Differential impact of acclimation and acute water deprivation in the expression of key transcription factors in soybean roots. Plant Mol Biol Rep 34(6):1167–1180

    Google Scholar 

  • Guo Q, Liu L, Barkla BJ (2019) Membrane lipid remodeling in response to salinity. Int J Mol Sci 20(17):4264

    CAS  PubMed Central  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013) Mineral nutrition and enzymatic adaptation induced by arsenate and arsenite exposure in lettuce plants. Plant Physiol Biochem 71:307–314

    CAS  PubMed  Google Scholar 

  • Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One 6:e28888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain I, Saleem MH, Mumtaz S, Rasheed R, Ashraf MA, Maqsood F, Rehman M, Yasmin H, Ahmed S, Ishtiaq M, Anwar S, Ali S 2021 Choline chloride mediates chromium tolerance in spinach (Spinacia oleracea L) by restricting its uptake in relation to morpho-physio-biochemical attributes. J Plant Growth Regul 1–21

  • Islam E, Khan MT, Irem S (2015) Biochemical mechanisms of signaling: perspectives in plants under arsenic stress. Ecotox Environ Saf 114:126–133

    CAS  Google Scholar 

  • Javed MT, Saleem MH, Aslam S, Rehman M, Iqbal N, Begum R, Ali S, Alsahli AA, Alyemeni MN, Wijaya L (2020) Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cadmium stressed Ajwain (Trachyspermum ammi L.). Plant Physiol Biochem 157:23–37

    CAS  PubMed  Google Scholar 

  • Jha AB, Dubey RS (2004) Arsenic exposure alters activity behaviour of key nitrogen assimilatory enzymes in growing rice plants. Plant Growth Regul 43(3):259–268

    CAS  Google Scholar 

  • Jiang Y, Wu K, Lin F, Qu Y, Liu X, Zhang Q (2014) Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis. Planta 239(3):565–575

    CAS  PubMed  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38(4):102

    Google Scholar 

  • Kaya C, Ashraf M, Alyemeni MN, Corpas FJ, Ahmad P (2020) Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J Hazard Mater 399:e123020

    Google Scholar 

  • Kevresan S, Petrovic N, Popovic M, Kandrac J (2001) Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. J Plant Nutr 24(10):1633–1644

    CAS  Google Scholar 

  • Kidokoro S, Watanabe K, Ohori T, Moriwaki T, Maruyama K, Mizoi J, Htwe NMPS, Fujita Y, Sekita S, Shinozaki K, Yamaguchi-Shinozaki K (2015) Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J 81:505–518

    CAS  PubMed  Google Scholar 

  • Lei GJ, Sun L, Sun Y, Zhu XF, Li GX, Zheng SJ (2020) Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol 62(2):218–227

    CAS  PubMed  Google Scholar 

  • Litter MI, Ingallinella AM, Olmos V, Savio M, Difeo G, Botto L, Farfán Torres EM, Taylor S, Frangie S, Herkovits J, Schalamuk I, González MJ, Berardozzi E, García Einschlag FS, Bhattacharya P, Ahmad A (2019) Arsenic in Argentina: occurrence, human health, legislation and determination. Sci Total Environ 676:756–766

    CAS  PubMed  Google Scholar 

  • Luna DF, Aguirre A, Pittaro G, Bustos D, Ciacci B, Taleisnik E (2017) Nutrient deficiency and hypoxia as constraints to Panicum coloratum growth in alkaline soils. Grass Forage Sci 72(4):640–653

    CAS  Google Scholar 

  • Luna DF, Pons ABS, Bustos D, Taleisnik E (2018) Early responses to Fe-deficiency distinguish Sorghum bicolor genotypes with contrasting alkalinity tolerance. Environ Exp Bot 155:165–176

    CAS  Google Scholar 

  • Maghsoudi K, Arvin MJ, Ashraf M (2019) Mitigation of arsenic toxicity in wheat by the exogenously applied salicylic acid, 24-epi-brassinolide and silicon. J Soil Sci Plant Nutr 20:577–588

    Google Scholar 

  • Mallick S, Kumar N, Singh AP, Sinam G, Yadav RN, Sinha S (2013) Role of sulfate in detoxification of arsenate-induced toxicity in Zea mays L (SRHM 445): nutrient status and antioxidants. J Plant Interact 8(2):140–154

    CAS  Google Scholar 

  • Marcolino-Gomes J, Rodrigues FA, Fuganti-Pagliarini R, Bendix C, Nakayama TJ, Celaya B, Molinari HBC, Neves de Oliveira MC, Harmon FG, Nepomuceno A (2014) Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One 9(1):e86402

    PubMed  PubMed Central  Google Scholar 

  • Mariño EE, Ávila GT, Bhattacharya P, Schulz CJ (2020) The occurrence of arsenic and other trace elements in groundwater of the southwestern Chaco-Pampean plain. Argentina. J South Am Earth Sci 100:e102547

    Google Scholar 

  • Masuda T, Goldsmith PD (2009) World soybean production: area harvested, yield, and long-term projections. Int Food Agribusiness Manag Rev 12:1–20

    Google Scholar 

  • Maxwell K, Johnson GN (2000) Clorophyll fluorescence - a practical guide. J Exp Bot 51:659–668

    CAS  PubMed  Google Scholar 

  • Meza-Canales ID, Meldau S, Zavala JA, Baldwin IT (2017) Herbivore perception decreases photosynthetic carbon assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception. Plant Cell Environ 40(7):1039–1056

    CAS  PubMed  Google Scholar 

  • Milivojevic DB, Nikolic BR, Drinic G (2006) Effects of arsenic on phosphorus content in different organs and chlorophyll fluorescence in primary leaves of soybean. Biol Plant 50(1):149

    CAS  Google Scholar 

  • Mir MA, Sirhindi G, Alyemeni MN, Alam P, Ahmad P (2018) Jasmonic acid improves growth performance of soybean under nickel toxicity by regulating nickel uptake, redox balance, and oxidative stress metabolism. J Plant Growth Regul 37(4):1195–1209

    CAS  Google Scholar 

  • Muehe EM, Eisele JF, Daus B, Kappler A, Harter K, Chaban C (2014) Are rice (Oryza sativa L.) phosphate transporters regulated similarly by phosphate and arsenate? A Comprehensive study. Plant Mol Biol 85(3):301–316

    CAS  PubMed  Google Scholar 

  • Naeem M, Sadiq Y, Jahan A, Nabi A, Aftab T, Khan MMA (2020) Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. Ecotox Environ Saf 202:e110851

    Google Scholar 

  • Puckett EE, Serapiglia MJ, DeLeon AM, Long S, Minocha R, Smart LB (2012) Differential expression of genes encoding phosphate transporters contributes to arsenic tolerance and accumulation in shrub willow (Salix spp.). Environ Exp Bot 75:248–257

    CAS  Google Scholar 

  • Reed ST, Ayala-Silva T, Dunn CB, Gordon GG (2015) Effects of arsenic on nutrient accumulation and distribution in selected ornamental plants. Agric Sci 6:1513–1531

    Google Scholar 

  • Rucińska-Sobkowiak R (2016) Water relations in plants subjected to heavy metal stresses. Acta Physiol Plant 38(11):257

    Google Scholar 

  • Sagervanshi A, Naeem A, Geilfus CM, Kaiser H, Muhling KH (2021) One-time abscisic acid priming induces long-term salinity resistance in Vicia faba: changes in key transcripts, metabolites, and ionic relations. Physiol Plant 172(1):146–161

    CAS  PubMed  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    PubMed  PubMed Central  Google Scholar 

  • Saleem MH, Ali S, Rehman M, Rana MS, Rizwan M, Kamran M, Imran M, Riaz M, Soliman MH, Elkelish A, Liu L (2020) Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L) varieties grown in a copper mining soil of Hubei Province. China. Chemosphere 248:e126032

    Google Scholar 

  • Sarwat M, Tuteja N (2017) Hormonal signaling to control stomatal movement during drought stress. Plant Gene 11:143–153

    CAS  Google Scholar 

  • Sharkey TD (2016) What gas exchange data can tell us about photosynthesis. Plant Cell Environ 39(6):1161–1163

    CAS  PubMed  Google Scholar 

  • Singh SB, Srivastava PK (2020) Bioavailability of arsenic in agricultural soils under the influence of different soil properties. SN Appl Sci 2(2):1–16

    Google Scholar 

  • Singh AP, Dixit G, Mishra S, Dwivedi S, Tiwari M, Mallick S, Pandey V, Trivedi PK, Chakrabarty D, Tripathi RD (2015) Salicylic acid modulates arsenic toxicity by reducing its root to shoot translocation in rice (Oryza sativa L). Front Plant Sci 6:e340

    Google Scholar 

  • Sirhindi G, Mir MA, Abd-Allah EF, Ahmad P, Gucel S (2016) Jasmonic acid modulates the physio-biochemical attributes, antioxidant enzyme activity, and gene expression in Glycine max under nickel toxicity. Front Plant Sci 7:591

    PubMed  PubMed Central  Google Scholar 

  • Stirbet A (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B-Biol 104(1–2):236–257

    CAS  Google Scholar 

  • Talano MA, Cejas RB, González PS, Agostini E (2013) Effect of sodium arsenate and arsenite on soybean development and in the symbiotic interaction with Bradyrhizobium japonicum. Plant Physiol Biochem 63:8–14

    CAS  PubMed  Google Scholar 

  • Tang Z, Zhao FJ (2020) The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1795053

    Article  Google Scholar 

  • Tsimilli-Michael M, Reto Strasser J (2020) Revisiting JIP-test: an educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica 58:275–292

    CAS  Google Scholar 

  • Vezza ME, Llanes A, Travaglia C, Agostini E, Talano MA (2018) Arsenic stress effects on root water absorption in soybean plants: physiological and morphological aspects. Plant Physiol Biochem 123:8–17

    CAS  PubMed  Google Scholar 

  • Vezza ME, Luna DF, Agostini E, Talano MA (2019) Glutathione, a key compound for as accumulation and tolerance in soybean plants treated with AsV and AsIII. Environ Exp Bot 162:272–282

    CAS  Google Scholar 

  • Vezza ME, Sosa Alderete LG, Agostini E, Talano MA (2020) Expression of circadian clock genes and diurnal oscillations of key physiological events in response to AsV and AsIII in soybean plants. Environ Exp Bot 174:e104054

    Google Scholar 

  • Vigliocco A, Del Bel Z, Pérez-Chaca MV, Molina A, Zirulnik F, Andrade AM, Alemano S (2020) Spatiotemporal variations in salicylic acid and hydrogen peroxide in sunflower seeds during transition from dormancy to germination. Physiol Plant 169(1):27–39

    CAS  PubMed  Google Scholar 

  • Vishwakarma K, Upadhyay N, Kumar N, Yadav G, Singh J, Mishra RK, Kumar V, Verma R, Upadhyay RG, Pandey M, Sharma S (2017) Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front Plant Sci 8:161

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Dai L, Jiang Z, Peng W, Zhang L, Wang G, Xie D (2005) GmCOI1, a soybean F-Box protein gene, shows ability to mediate jasmonate-regulated plant defense and fertility in Arabidopsis. Mol Plant-Microbe Interact 18(12):1285–1295

    CAS  PubMed  Google Scholar 

  • Wang Y, Yu K, Poysa V, Shi C, Zhou Y (2012) Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium. Mol Biol Rep 39(2):1585–1594

    CAS  PubMed  Google Scholar 

  • Wang H, Ding C, Du H, Liu H, Wang Y, Yu D (2014) Identification of soybean MYC2-like transcription factors and overexpression of GmMYC1 could stimulate defense mechanism against common cutworm in transgenic tobacco. Biotechnol Lett 36:1881–1892

    CAS  PubMed  Google Scholar 

  • Wang F, Tan H, Zhang Y, Huang L, Bao H, Ding Y, Chen Z, Zhu C (2021) Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice. Chemosphere 263:e128034

    Google Scholar 

  • Xing Q, Liao J, Cao S, Li M, Lv T, Qi H (2020) CmLOX10 positively regulates drought tolerance through jasmonic acid-mediated stomatal closure in oriental melon (Cucumis melo var makuwa Makino). Sci Rep 10(1):1–14

    Google Scholar 

  • Yang Q, Wang L, Zhou Q, Huang X (2015) Toxic effects of heavy metal terbium ion on the composition and functions of cell membrane in horseradish roots. Ecotox Environ Saf 111:48–58

    CAS  Google Scholar 

  • Yastreb TO, Kolupaev YE, Shkliarevskyi MA, Dyachenko AI, Dmitriev AP (2020) Involvement of jasmonate signaling components in salt stress-induced stomatal closure in Arabidopsis thaliana. Cytol Genet 54(4):318–323

    Google Scholar 

  • Yu LJ, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li JT, Hu SN, Shu WS (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    CAS  PubMed  Google Scholar 

  • Zaheer IE, Ali S, Saleem MH, Imran M, Alnusairi GS, Alharbi BM, Riaz M, Abbas Z, Rizwan M, Soliman MH (2020) Role of iron-lysine on morpho-physiological traits and combating chromium toxicity in rapeseed (Brassica napus L.) plants irrigated with different levels of tannery wastewater. Plant Physiol Biochem 155:70–84

    CAS  PubMed  Google Scholar 

  • Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16(1):105

    PubMed  PubMed Central  Google Scholar 

  • Zegada-Lizarazu W, Luna DF, Monti A (2016) Differential characteristics of photochemical acclimation to cold in two contrasting sweet sorghum hybrids. Physiol Plant 157(4):479–489

    CAS  PubMed  Google Scholar 

  • Zvobgo G, LwalabaWaLwalaba J, Sagonda T, Mapodzeke JM, Muhammad N, Shamsi IH, Zhang G (2018) Phosphate alleviates arsenate toxicity by altering expression of phosphate transporters in the tolerant barley genotypes. Ecotox Environ Saf 147:832–839

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Fernando Darío Luna and Leandro Ortega (Instituto de Fisiología y Recursos Genéticos Vegetales [IFRGV], CIAP-INTA. Córdoba, Argentina) for providing the necessary resources and assistance during analysis of chlorophyll fluorescence and mineral nutrient content, respectively.

Funding

This research was financially supported by Secretaría de Ciencia y Tecnología-Universidad Nacional de Río Cuarto (SeCyT-UNRC) and Fondo para la Investigación Científica y Tecnológica (FONCYT) (PICT 2143/17).

Author information

Authors and Affiliations

Authors

Contributions

M.E.V.: Methodology, Investigation, Conceptualization, Formal analysis, Writing—original draft, Writing—review & editing. S.A.: Resources, Methodology, Writing—review & editing. E.A.: Funding acquisition, Supervision, Writing—review & editing. M.A.T.: Funding acquisition, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Mariana E. Vezza.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Handling Editor: Vijay Pratap Singh .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vezza, M.E., Alemano, S., Agostini, E. et al. Arsenic Toxicity in Soybean Plants: Impact on Chlorophyll Fluorescence, Mineral Nutrition and Phytohormones. J Plant Growth Regul 41, 2719–2731 (2022). https://doi.org/10.1007/s00344-021-10469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-021-10469-1

Keywords

Navigation