Skip to main content
Log in

Hexavalent Chromium Removal From Aqueous Solutions by Fe-Modified Peanut Husk

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Cr(VI) adsorption from aqueous solutions on peanut husk modified with formaldehyde (PeH-F) and peanut husk modified with formaldehyde and Fe (PeH-FFe) was evaluated as a function of shaking time, initial pH, chromium concentration, and temperature. Results showed that the Cr(VI) is preferentially adsorbed by PeH-FFe at pH 2 than pH 6. It also was found that the chromate equilibrium sorption capacity for PeH-FFe is at least six times higher than for PeH-F. The optimum pH to remove chromium is 2 for both materials; however, PeH-FFe has a higher efficiency for the chromium removal. Finally, Cr(VI) adsorption also depends on chromium concentration and temperature. The adsorption data as a function of concentration obey Linear, Freundlich, and Langmuir isotherms at pH 2 and 6. The Cr(VI) maximum capacity of PeH-FFe at pH 2 was 33.11 mg Cr(VI)/g, slightly higher than that at pH 6 (31.75 mg Cr(VI)/g). The linear isotherm shows that the pH affect the Cr(VI) distribution into the aqueous/solid phases. The negative value of ΔH° and positive values of ΔG° indicate that the chromium adsorption process is an exothermic and non-spontaneous process. The characterization of the peanut husk modified with formaldehyde and peanut husk modified with formaldehyde and Fe by scanning electron microscopy, Raman, and IR spectroscopies as well as the textural characteristics of the no-living biomasses were also considered in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Othman, Z. A., Ali, R., & Nauhad, M. (2012). Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: adsorption kinetics, equilibrium and thermodynamic studies. Chemical Engineering Journal, 184, 238–247.

    Article  CAS  Google Scholar 

  • Aryal, M., Ziagova, M., & Liakopoulou-Kyriakides, M. (2011). Comparison of Cr(VI) and As(V) removal in single and binary mixtures with Fe(III)-treated Staphylococcus xylosus biomass: thermodynamic studies. Chemical Engineering Journal, 169, 100–106.

    Article  CAS  Google Scholar 

  • Chakravarti, A. K., Chowdhury, S., Chakrabarty, S., & Mukherjee, D. C. (1995). Liquid membranes multiple emulsion process of chromium (VI) separation from wastewater. Colloid Surface A, 103, 59–71.

    Article  CAS  Google Scholar 

  • Cimino, G., Passerini, A., & Toscano, G. (2000). Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Research, 34, 2955–2962.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Salari, D., & Aber, S. (2002). Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solution by soya cake. Journal of Hazardous Materials, 94, 49–61.

    Article  CAS  Google Scholar 

  • Dziwulska, U., Bajguz, A., & Zylkiewicz, B. (2004). The use of algae Chlorella vulgaris immobilized on cellex T support for separation/preconcentration of trace amounts of platinum and palladium before GFAAS determination. Analytical Letters, 37, 2189–2203.

    Article  CAS  Google Scholar 

  • El-Zahrani, H. A., & El-Saied, A. I. (2011). Bioremediation of heavy metal toxicity from factory effluents by transconjugants bacteria. Journal of the Egyptian Society of Parasitology, 41, 641–650.

    Google Scholar 

  • Gode, F., & Pehlivan, E. (2005). Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. Journal of Hazardous Materials, 119, 175–182.

    Article  CAS  Google Scholar 

  • Granados-Correa, F., & Serrano-Gómez, J. (2009). CrO4 2− ions adsorption by Fe-modified pozzolane. Separation Science and Technology, 44, 924–936.

    Article  CAS  Google Scholar 

  • Hasany, M. S., Saeed, M. M., & Ahmed, M. (2000). Adsorption isotherms and thermodynamic profile of Co(II)–SCN complex uptake on polyurethane foam. Separation Science and Technology, 35, 379–394.

    Article  CAS  Google Scholar 

  • Juang, R. S., & Shiau, R. C. (2000). Metal removal from aqueous solutions using chitosan enhanced membrane filtration. Journal of Membrane Science, 21, 1091–1097.

    Google Scholar 

  • Kowalsky, Z. (1994). Treatment of chromic tannery wastes. Journal of Hazardous Materials, 37, 137–144.

    Article  Google Scholar 

  • Liu, B., & Huang, Y. (2011). Polyethyleneimine modified eggshell membrane as a novel biosorbent for adsorption and detoxification of Cr(VI) from water. Journal of Materials Chemistry, 21, 17413–17418.

    Article  CAS  Google Scholar 

  • Machado, M. D., Santos, M. S. F., Gouveia, C., Soares, H. M. V. M., & Soares, E. V. (2008). Removal of heavy metals using a Brewer's yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresource Technology, 99, 2107–2115.

    Article  CAS  Google Scholar 

  • Malik, P. K. (2004). Dye removal from waste water using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 113, 81–88.

    Article  CAS  Google Scholar 

  • Marandi, R. (2011). Biosorption of hexavalent chromium from aqueous solution by dead fungal biomass of Phanerochaete crysosporium: batch and fixed bed studies. Canadian Journal of Chemical Engineering, 2, 8–22.

    Google Scholar 

  • Owland, M., Arou, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, and Soil Pollution, 200, 59–77.

    Article  Google Scholar 

  • Qadeer, R., Hanif, J., Saleem, M., & Afzal, M. (1993). Surface characterization and thermodynamics of adsorption of Sr2+, Ce3+, Sm3+, Gd3+, Th4+, UO2 2+ on activated charcoal from aqueous solution. Colloid & Polymer Science, 271, 83–90.

    Article  CAS  Google Scholar 

  • Randall, J. M., Hautala, E., & McDonald, G. (1978). Binding of heavy metal Ions by formaldehyde-polymerized peanut skins. Journal of Applied Polymer Science, 22, 379–387.

    Article  CAS  Google Scholar 

  • Rengaraj, S., Yeon, K. H., & Moon, S. H. (2001). Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, 87, 273–287.

    Article  CAS  Google Scholar 

  • Ricordel, S., Taha, S., Cisse, I., & Dorange, G. (2001). Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Separation and Purification Technology, 24, 389–401.

    Article  CAS  Google Scholar 

  • Saeed, M. M. (2003). Adsorption profile and thermodynamic parameter of the preconcentration of Eu(III) on 2-thenoyltrifluroroacetone loaded polyurethane (PUR) foam. Journal of Radioanalytical and Nuclear Chemistry, 256, 73–80.

    Article  CAS  Google Scholar 

  • Saha, B., & Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 254, 2959–2972.

    Article  CAS  Google Scholar 

  • Serrano-Gómez, J., López-González, H., Olguín, M. T., & Bulbulian, S. (2010). As (V) adsorption by uunmodified and Iron modified pozzolane. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 67, 153–158.

    Article  Google Scholar 

  • Shaik, B., Murthy, Z. V. P., & Jha, B. (2008). Biosorption of hexavalent chromium by chemically modified seaweed, Cystoseira indica. Chemical Engineering Journal, 137, 480–488.

    Article  Google Scholar 

  • Tewari, N., Vasudevan, P., & Guha, B. K. (2005). Study on biosorption of Cr(VI) by Mucor hiemalis. Biochemical Engineering Journal, 23, 185–192.

    Article  CAS  Google Scholar 

  • Ucun, H., Bayhan, K. Y., & Kaya, Y. (2008). Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus silvestri Linn. Journal of Hazardous Materials, 153, 52–59.

    Article  CAS  Google Scholar 

  • Varga, M., Takács, M., Záray, G., & Varga, I. (2013). Comparative study of sorption kinetic and equilibrium of chromium (VI) on charcoals prepared from different low-cost materials. Michrochemical Journal, 107, 25–30.

    Article  CAS  Google Scholar 

  • Witek-Krowiak, A., Szafran, R. G., & Modelski, S. (2011). Biosorption of heavy metals from aqueous solutions onto peanut shell a low-cost biosorbent. Desalination, 265, 126–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M. T. Olguín thanks CONACyT project 131174-Q for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Olguín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olguín, M.T., López-González, H. & Serrano-Gómez, J. Hexavalent Chromium Removal From Aqueous Solutions by Fe-Modified Peanut Husk. Water Air Soil Pollut 224, 1654 (2013). https://doi.org/10.1007/s11270-013-1654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1654-6

Keywords

Navigation