Skip to main content
Log in

Effects of Pseudomonas fluorescens Seed Bioinoculation on Heavy Metal Accumulation for Mirabilis jalapa Phytoextraction in Smelter-Contaminated Soil

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Some Pseudomonas fluorescens strains, consistently isolated from the rhizosphere of wild plants grown in a soil that was highly polluted with illegal waste of smelter residues, were utilised for Mirabilis jalapa seed bioinoculation to verify their effects on seed germination and on promoting a higher heavy metal accumulation in the plant rhizosphere and/or uptake in the leaves. The high content of heavy metals in the soil induced a decrease in either the leaf dry weight or photosynthetic pigment concentration during all vegetative phase of M. jalapa. Bioinoculation with P. fluorescens strains significantly increased the germination of seeds and the root length in the contaminated soil. In some bacterial strain/seed combination, bioinoculation significantly increased the accumulation of heavy metals in M. jalapa rhizosphere. For Cd, the concentration of this metal in the rhizospheres of bioinoculated plants ranged from 270 to 910 μg g−1 of dry weight compared with 200 μg g−1 of dry weight for the non-coated plants. Two P. fluorescens strains, AA27 and MO49, which were isolated from Artemisia annua and Melilotus officinalis, respectively, induced a significantly higher rhizosphere availability also for Cr, Cu, Ni and Zn. However, despite the relevant accumulation of the heavy metals in the plant rhizosphere, generally the metal uptake into the leaves was rather low. Both analysis of variance and principal component analysis confirmed this finding. However, one P. fluorescens strain, CD1, which was isolated from the multi-metal accumulator Cynodon dactylon, significantly promoted the M. jalapa leaf uptake for Cr, Cu and Zn. The plant metal uptake assessment, confirmed the per se capability of M. jalapa to effectively uptake Cd (30 %) and Cu (12.72 %) from the rhizosphere to the leaves, whereas the uptake for the other metals was low: Ni (2.66 %), Zn (2.46 %), Cr (1.75 %), Pb (0.73 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abou-Shanab, R. A. I., Angle, J. S., & Chaney, R. L. (2006). Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biology and Biochemistry, 38, 2882–2889.

    Article  CAS  Google Scholar 

  • Angle, J. S., Gagliardi, J. V., McIntosh, M. S., & Levin, M. A. (1996). Enumeration and expression of bacterial counts in the rhizosphere. In G. Stotzky & J. M. Bollag (Eds.), Soil biochemistry, Vol. 9 (pp. 233–251). New York: Marcel Dekker.

    Google Scholar 

  • Appanna, V. D., Gazso, L. G., & Pierre, M. S. (1996). Multiple-metal tolerance in Pseudomonas fluorescens and its biotechnological significance. Journal of Biotechnology, 52, 75–80.

    Article  CAS  Google Scholar 

  • Archer, M. J. G., & Caldwell, R. A. (2004). Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water, Air, and Soil Pollution, 157, 257–267.

    Article  CAS  Google Scholar 

  • Arduini, I., Douglas, L., Godbold, D. L., & Antonio, O. (1995). Influence of copper on root growth and morphology of Pinus pinea L. and Pinus pinaster Ait. seedlings. Tree Physiology, 15, 411–415.

    Article  CAS  Google Scholar 

  • Baker, A. J. M., Mc Grath, S. P., Reeves, R. D., & Smith, J. A. C. (2000). Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal polluted soils. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 85–107). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Bartoli, G., Papa, S., Sagnella, E., & Fioretto, A. (2012). Heavy metal content in sediments along the Calore river: relationships with physical–chemical characteristics. Journal of Environmental Management, 95, 9–14.

    Article  Google Scholar 

  • Cakmak, I., Sari, N., Marschner, H., Ekiz, H., & Kalayci, M. (1996). Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant and Soil, 180, 183–189.

    Article  CAS  Google Scholar 

  • Cao, A., Carucci, A., Lai, T., La Colla, P., & Tamburini, E. (2007). Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. European Journal of Soil Biology, 43, 200–206.

    Article  CAS  Google Scholar 

  • De Bashan, L. E., Hernandez, J.-P., & Bashan, Y. (2012). The potential contribution of plant growth-promoting bacteria to reduce environmental degradation. A comprehensive evaluation. Applied Soil Ecology, 61, 171–189.

    Article  Google Scholar 

  • Dell'Amico, E., Cavalca, L., & Andreoni, V. (2005). Analysis of bacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology, 52, 153–162.

    Article  Google Scholar 

  • Dell'Amico, E., Cavalca, L., & Andreoni, V. (2008). Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry, 40, 74–84.

    Article  Google Scholar 

  • Doumett, S., Lamperi, L., Checchini, L., Azzarello, E., Mugnai, S., Mancuso, S., Petruzzelli, G., & Del Bubba, M. (2008). Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere, 72, 1481–1490.

    Article  CAS  Google Scholar 

  • Dzantor, E. K. (2007). Phytoremediation: the state of rhizosphere “engineering” for accelerated rhizodegradation of xenobiotic contaminants. Journal of Chemical Technology and Biotechnology, 82, 228–232.

    Article  CAS  Google Scholar 

  • Ferrante, P., & Scortichini, M. (2009). Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in central Italy. Journal of Phytopathology, 157, 768–770.

    Article  Google Scholar 

  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil–rhizosphere–plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.

    Article  CAS  Google Scholar 

  • Fitz, W. J., Wenzel, W. W., Zhang, H., Nurmi, J., Stipek, K., Fiscerova, Z., Schweiger, P., Kollenspeger, G., Mal, Q., & Stingeder, G. (2003). Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environmental Science and Technology, 37, 5008–5014.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2004). Microbial influence on metal mobility and application to bioremediation. Geoderma, 122, 109–119.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2010). Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28, 367–374.

    Article  CAS  Google Scholar 

  • John, R., Ahmadb, P., Gadgila, K., & Sharmab, S. (2009). Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. International Journal of Plant Production, 3, 65–76.

    CAS  Google Scholar 

  • Johnsen, K., Enger, O., Jacobens, C. S., Thirupo, L., & Torsvik, V. (1999). Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Applied and Environmental Microbiology, 65, 1786–1789.

    CAS  Google Scholar 

  • Kambhampati, M.S., & Williams, L. (2001). Phytoremediation of lead contaminated soils using Mirabilis jalapa. In: A. Leeson, E.A. Foote, M.K. Banks, & V.S. Magar (Eds.), Phytoremediation, wetlands and sediments, Proceedings of the sixth international in situ and on site bioremediation symposium (pp. 145–150). San Diego, CA, USA: Battelle Press.

  • Khan, M. S., Zaidi, A., Wani, P. A., & Oves, M. (2009). Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environmental Chemistry Letters, 7, 1–19.

    Article  Google Scholar 

  • King, E. O., Ward, M. K., & Raney, D. E. (1954). Two simple media for the demonstration of pioverdin and fluorescein. The Journal of Laboratory and Clinical Medicine, 44, 301–307.

    CAS  Google Scholar 

  • Kumar, K. V., Singh, N., Behl, H. M., & Srivastava, S. (2008). Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere, 72, 678–683.

    Article  CAS  Google Scholar 

  • Lebeau, T., Braud, A., & Jezequel, K. (2008). Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environmental Pollution, 153, 497–522.

    Article  CAS  Google Scholar 

  • Lelliott, R. A., & Stead, D. E. (1987). Methods for the diagnosis of bacterial diseases of plants. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Louws, F. J., Fulbright, D. W., Stephens, C. T., & De Bruijn, F. J. (1994). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Applied and Environmental Microbiology, 60, 2286–2295.

    CAS  Google Scholar 

  • Mc Grath, S. P., Zhao, F. J., & Lombi, E. (2001). Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant and Soil, 232, 207–214.

    Article  CAS  Google Scholar 

  • Mench, M., & Martin, E. (1991). Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant and Soil, 132, 187–196.

    CAS  Google Scholar 

  • Ministry of Agricultural, Food and Forestry Policies (1999). Metodi ufficiali di analisi chimica del suolo. Decreto Ministeriale del 13 settembre 1999. Official Journal Supplement no. 284, 21/10/1999.

  • Monti, M. R., Smania, A. M., Fabro, G., Alvarez, M. E., & Argaraña, C. E. (2005). Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Applied and Environmental Microbiology, 71, 8864–8872.

    Article  CAS  Google Scholar 

  • Pandey, B. V., & Upadhyay, R. S. (2010). Pseudomonas fluorescens can be used for bioremediation of textile effluent direct orange. Tropical Ecology, 51, 397–403.

    CAS  Google Scholar 

  • Papa, S., Bartoli, G., Pellegrino, A., & Fioretto, A. (2010). Microbial activities and trace element contents in an urban soil. Environmental Monitoring and Assessment, 165, 193–203.

    Article  CAS  Google Scholar 

  • Pignatti, S. (1982). Flora d'Italia , Vol. 1-3. Bologna: Edagricole.

    Google Scholar 

  • Scortichini, M., Marchesi, U., & Di Prospero, P. (2002). Genetic relatedness among Pseudomonas avellanae, P. syringae pv. theae and P. s. pv. actinidiae, and their identification. European Journal of Plant Pathology, 108, 269–278.

    Article  CAS  Google Scholar 

  • Scortichini, M., Marchesi, U., Rossi, M. P., Angelucci, L., & Dettori, M. T. (2000). Rapid identification of Pseudomonas avellanae field isolates, causing hazelnut decline in central Italy, by repetitive PCR genomic fingerprinting. Journal of Phytopathology, 148, 153–159.

    Article  CAS  Google Scholar 

  • Semple, K. T., Morriss, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis. European Journal of Soil Science, 54, 809–818.

    Article  CAS  Google Scholar 

  • Shah, S., & Thakur, I. S. (2003). Enzymatic dehalogenation of pentachlorophenol by Pseudomonas fluorescens of the microbial community from tannery effluent. Current Microbiology, 47, 65–70.

    Article  CAS  Google Scholar 

  • Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156, 1164–1170.

    Article  CAS  Google Scholar 

  • Shenker, M., Fan, T. W.-M., & Crowley, D. E. (2001). Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. Journal of Environmental Quality, 30, 2091–2098.

    Article  CAS  Google Scholar 

  • Sriprang, R., & Murooka, Y. (2007). Accumulation and detoxification of metals by plants and microbes. In S. N. Singh & R. D. Tripathi (Eds.), Environmental bioremediation technologies (pp. 77–100). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Sun, Y. B., Sun, G. H., Zhou, Q. Y., Xu, Y. M., Wang, L., Liang, X. F., Sun, Y., & Qing, X. (2011). Induced-phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with Marvel of Peru (Mirabilis jalapa L.). Plant Soil and Environment, 57, 364–371.

    CAS  Google Scholar 

  • Thompson, I. P., Van der Gast, C. J., Ciric, L., & Singer, A. C. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology, 7, 909–915.

    Article  CAS  Google Scholar 

  • Van der Lelie, D., Corbisier, P., Diels, L., Gilis, A., Lodewyckx, C., Mergeay, M., Taghavi, S., Spelmans, N., & Vangronsveld, J. (1999). The role of bacteria in the phytoremediation of heavy metals. In N. Terry & E. Bañuelos (Eds.), Phytoremediation of contaminated soil and water (pp. 265–281). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Van Elsas, J. D., Van Overbeek, L. S., Feldmann, A. M., Dullemans, A. M., & De Leeuw, O. (2006). Survival of genetically engineered Pseudomonas fluorescens in soil in competition with the parent strain. FEMS Microbiology Letters, 85, 53–64.

    Article  Google Scholar 

  • Wasi, S., Jeelani, G., & Ahmad, M. (2008). Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere, 71, 1348–1355.

    Article  CAS  Google Scholar 

  • Wasi, S., Tabrez, S., & Ahmad, M. (2010). Suitability of immobilized Pseudomonas fluorescens SM1 strain for remediation of phenols, heavy metals, and pesticides from water. Water, Air, and Soil Pollution, 220, 89–99.

    Article  Google Scholar 

  • Wellburn, A. R. (1994). The spectral determination of chlorophylls A and B, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Bunkowski, M., Puschenreiter, M., & Horak, O. (2003). Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and tolerant plants on serpentine soil. Environmental Pollution, 123, 131–138.

    Article  CAS  Google Scholar 

  • Wenzel, W. W. (2009). Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant and Soil, 32, 385–408.

    Article  Google Scholar 

  • Younis, M. (2007). Response of Lablab purpureusRhizobium symbiosis to heavy metals in pot and field experiments. World Journal of Agricultural Science, 3, 111–122.

    Google Scholar 

  • Yu, Z., & Zhou, Q. (2009). Growth responses and cadmium accumulation of Mirabilis jalapa L. under interaction between cadmium and phosphorus. Journal of Hazardous Materials, 167, 38–43.

    Article  CAS  Google Scholar 

  • Zablotowicz, R.M., Hoagland, R.E., Lee, H., Alber, T., Trevors, J.T., Hall, J.C. et al. (2001). Transformation of nitroaromatic pesticides and related xenobiotics by microorganisms and plants. In J.C. Hall,. R.E. Hoagland, & R.M. Zablotowicz (Eds), Pesticide biotransformation in plants and microorganisms: similarities and divergences. ACS Symposium Series 777. Washington, DC, American Chemical Society.

  • Zengin, F. K., & Munzuroglu, O. (2006). Toxic effects of cadmium (Cd++) on metabolism of sunflower (Helianthus annuus L.) seedlings. Acta Agriculturae Scandinavica. Sect. B. Plant Soil Science, 56, 224–229.

    CAS  Google Scholar 

  • Zhang, Y., He, L., Chen, Z., Wang, Q., Qian, M., & Sheng, X. (2011). Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere, 83, 57–62.

    Article  CAS  Google Scholar 

  • Zhou, Q.X., & Liu, J.N. (2006). A new method to remediate Cd-contamination soil by Mirabilis jalapa L., China Patent No. 200610046244.9.

  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environmental International, 33, 406–413.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by a multitask co-operation grant between the Consiglio per la Ricerca e Sperimentazione in Agricoltura and Seconda Università degli Studi di Napoli, Caserta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Petriccione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petriccione, M., Di Patre, D., Ferrante, P. et al. Effects of Pseudomonas fluorescens Seed Bioinoculation on Heavy Metal Accumulation for Mirabilis jalapa Phytoextraction in Smelter-Contaminated Soil. Water Air Soil Pollut 224, 1645 (2013). https://doi.org/10.1007/s11270-013-1645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1645-7

Keywords

Navigation