Skip to main content
Log in

Landfill CH4 Oxidation, N2O, and CO2 Emissions from Wastewater-Incubated Mineralised Refuse: The Effect of Heavy Metal Addition and Environmental Factor Variations

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The first investigations on anthropogenic methane (CH4) oxidation and nitrous oxide (N2O) emissions from mineralised refuse after wastewater treatment are reported. The maximum methane oxidation rate (MOR) in the incubated material was 15.48 μmol/g dry weight/h, which was substantially higher than those for the original mineralised refuse or soil. A correlation analysis (P > 0.05) showed that the mean particle size (D 50) value, organic matter content, NH4 +–N nitrification, and NO3 –N generation rates (P < 0.05) were highly positively correlated with the MOR for each of the three materials. The addition of heavy metals (i.e., Pb, Zn, Cr, and Cd) resulted in a 20 % decrease in MOR relative to the unamended control for both the incubated mineralised refuse (P < 0.05) and the original mineralised refuse (P < 0.05), and the MOR for soil decreased by 2.5 times relative to the control (P > 0.05). Following the addition of distilled water, N2O emissions from the incubated mineralised refuse were almost two times and 1 order of magnitude greater than those of the MOR (P > 0.05) and soil (P > 0.05). The stimulation of N2O emissions from the mineralised refuse could be neglected under the much higher MOR of a municipal solid waste landfill. Because of its high tolerance for environmental factor variations (i.e., soil temperature and water content) and heavy metal addition, mineralised refuse could be used to filter a wide variety of wastewaters to increase the MOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4

Similar content being viewed by others

References

  • Abichou, T., Chanton, J., Powelson, D., Fleiger, J., Escoriaza, S., Yuan, L., et al. (2006). Methane flux and oxidation at two types of intermediate landfill covers. Waste Management, 26, 1305–1312.

    Article  CAS  Google Scholar 

  • Abichou, T., Mahieu, K., Chanton, J., Romdhane, M., & Mansouri, I. (2011). Scaling methane oxidation: from laboratory incubation experiments to landfill cover field conditions. Waste Management, 31(5), 978–986.

    Article  CAS  Google Scholar 

  • APHA, AWWA, & WEF. (1998). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: American Public Health Association, American Water Works Association, Water Environ Fed.

    Google Scholar 

  • Barlaz, M. A., Scharfer, D. M., & Ham, R. K. (1989). Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Applied and Environmental Microbiology, 55, 55–65.

    CAS  Google Scholar 

  • Barlaz, M. R., Green, R., Chanton, J. P., Goldsmith, C. D., & Hater, G. R. (2004). Biologically active cover for mitigation of landfill gas emissions. Environmental Science and Technology, 38, 4891–4899.

    Article  CAS  Google Scholar 

  • Bogner, J., Abdelrafie Ahmed, M., Diaz, C., Faaij, A., Gao, Q., Hashimoto, S., et al. (2007). Waste management. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bőrjesson, G., & Svensson, B. H. (1997). Nitrous oxide emission from landfill cover soils in Sweden. Tellus, 49, 357–363.

    Article  Google Scholar 

  • Bőjesson, G., Sundh, I., & Svensson, B. (2004). Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiology Ecology, 48, 305–312.

    Google Scholar 

  • Chen, G. X., Huang, B., Xu, H., Zhang, Y., Huang, G. H., Yu, K. W., et al. (2000). Nitrous oxide emissions from terrestrial ecosystems in China. Chemosphere: Global Change Science, 2, 373–378.

    Article  CAS  Google Scholar 

  • Cheng, W. G., Tsuruta, H., Chen, G. X., & Yage, K. (2004). N2O and NO production in various Chinese agricultural soils by nitrification. Soil Biology and Biochemistry, 36, 953–963.

    Google Scholar 

  • Czepiel, P. M., Mosher, B., Crill, P. M., & Harriss, R. C. (1996). Quantifying the effect of oxidation on landfill methane emissions. Journal of Physical Research, 101, 16721–16729.

    Article  CAS  Google Scholar 

  • Einola, J., Sormunen, K., Lensu, A., Leiskallio, A., Ettala, M., & Rintala, J. (2009). Methane oxidation at a surface-sealed boreal landfill. Waste Management, 29(7), 2105–2120.

    Article  CAS  Google Scholar 

  • Fierer, N., & Schimel, J. P. (2002). Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34, 777–787.

    Article  CAS  Google Scholar 

  • Gebert, J., Röwer, I. U., Scharff, H., Roncato, D. L. C., & Cabral, R. A. (2011). Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? Waste Management, 31, 987–994.

    Article  CAS  Google Scholar 

  • He, R., Ruan, A. D., Jiang, C. J., & Shen, D. S. (2008). Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Bioresource Technology, 99, 7192–7199.

    Article  CAS  Google Scholar 

  • Hilger, H. A., Wollum, A. G., & Barlaz, M. A. (2000). Landfill methane oxidation response to vegetation, fertilization and liming. Journal of Environmental Quality, 29, 324–334.

    Article  CAS  Google Scholar 

  • Huber-Humer, M., Gebert, J., & Hilger, H. (2008). Biotic systems to mitigate landfill methane emissions. Waste Management & Research, 26, 33–46.

    Article  CAS  Google Scholar 

  • Huber-Humer, M., Röder, S., & Lechner, P. (2009). Approaches to assess biocover performance on landfills. Waste Management, 29, 2092–2104.

    Article  CAS  Google Scholar 

  • IPCC (2001). The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, & D. Xiaos (Eds.). UK: Cambridge University Press.

  • Jäkel, U., Schnell, S., & Conrad, R. (2001). Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biology and Biochemistry, 33, 965–971.

    Article  Google Scholar 

  • Jia, Z. J., & Cai, Z. C. (2003). Methane consumption in relation to ammonia oxidation in paddy soils. Rural Eco-environmet, 19(4), 40–44. In Chinese.

    CAS  Google Scholar 

  • Khalil, M. I., & Baggs, E. M. (2005). CH4 oxidation and N2O emission at varied soil water-filled pore spaces and headspace CH4 concentrations. Soil Biology and Biochemistry, 37, 1785–1794.

    Google Scholar 

  • Kightley, D., Nedwell, D. B., & Cooper, M. (1995). Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Applied and Environment Microbiology, 61, 592–601.

    CAS  Google Scholar 

  • Lou, Z. Y., Wang, L., & Zhao, Y. C. (2011). Consuming un-captured methane from landfill using aged refuse bio-cover. Bioresource Technology, 102, 2328–2332.

    Article  CAS  Google Scholar 

  • Lu, R. K. (2000). Methods for soil agrochemistry analysis (pp. 62–141). Beijing: China Agricultural Science and Technology Press.

    Google Scholar 

  • Mandernack, K. W., Kinney, C. A., Coleman, D., Huang, Y. S., Freeman, K. H., & Bogner, J. (2000). The biogeochemical controls of N2O production and emission in landfill cover soils: the role of methanotrophs in the nitrogen cycle. Environmental Microbiology, 2(3), 298–309.

    Article  CAS  Google Scholar 

  • Mohanty, S. R., Bharati, K., Deepa, N., Rao, V. R., & Adhya, T. K. (2000). Infuence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicology and Environment Safety, 47, 277–284.

    Article  CAS  Google Scholar 

  • Murray, P. J., Hatch, D. J., Dixon, E. R., Stevens, R. J., Laughlin, R. J., & Jarvis, S. C. (2004). Denitrification potential in a grassland subsoil: effect of carbon substrates. Soil Biology and Biochemistry, 36, 545–547.

    Article  CAS  Google Scholar 

  • Priemé, A., & Christensen, S. (2001). Natural perturbations, drying–wetting and freezing–thawing cycles, and the emission of nitrous oxide, carbon dioxide and methane from farmed organic soils. Soil Biology and Biochemistry, 33, 2083–2091.

    Article  Google Scholar 

  • Rinne, J., Pihlatie, M., Lohila, A., Thum, T., Aurela, M., Tuovinen, J., et al. (2005). Nitrous oxide emissions from a municipal landfill. Environmental Science and Technology, 39(20), 7790–7793.

    Article  CAS  Google Scholar 

  • Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., & Munch, J. C. (2006). Emission of N2O, N2 and CO2 from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry, 38(2), 263–274.

    Article  CAS  Google Scholar 

  • Scheutz, C., & Kjeldsen, P. (2004). Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality, 33, 72–79.

    Article  CAS  Google Scholar 

  • Scheutz, C., Kjeldsen, P., Bogner, E. J., De Visscher, A., Gebert, J., Hilger, A. H., et al. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management & Research, 27, 409–455.

    Article  CAS  Google Scholar 

  • Spokas, K., & Bogner, E. J. (2011). Limits and dynamics of methane oxidation in landfill cover soils. Waste Management, 31, 823–832.

    Article  CAS  Google Scholar 

  • Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., et al. (2006). Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Management, 26(5), 516–525.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA). (2007). Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2005 (pp. 1–16). Washington: US Environmental Protection Agency.

    Google Scholar 

  • Wang, J., Xia, F. F., Bai, Y., Fang, C. R., Shen, D. S., & He, R. (2011). Methane oxidation in landfill waste biocover soil: Kinetics and sensitivity to ambient conditions. Waste Management, 31, 864–870.

    Article  CAS  Google Scholar 

  • Yang, W. J., Zhang, X. F., Dong, S. K., Liu, X. J., Wen, L., Lu, W. D., et al. (2010). Methane oxidation kinetics of a new organic cover for landfill. China Biogas, 28(3), 11–14. in Chinese.

    Google Scholar 

  • Yuan, W., Fang, H. L., & Zhao, Y. C. (2007). Experiment study of heavy metal washing away in aged waste. Environmental Sanitary Engineering, 15, 34–38. In Chinese.

    Google Scholar 

  • Yue, B., Lin, Y., Wang, Q., Huang, Z. C., Huang, Q. F., Yang, X., et al. (2011). Research on methane oxidation capacity of landfills cover materials and its impact factors. Journal of Environmental and Engineering Technology, 1, 57–62. In Chinese.

    Google Scholar 

  • Zhang, H. H., He, P. J., & Shao, L. M. (2008). Methane emissions from MSW landfill with sandy soil covers under leachate recirculation and subsurface irrigation. Atmospheric Environment, 42(22), 5579–5588.

    Article  CAS  Google Scholar 

  • Zhang, H. H., He, P. J., & Shao, L. M. (2009). N2O emissions at municipal solid waste landfill sites: effects of CH4 emissions and cover soil. Atmospheric Environment, 43(16), 2623–2631.

    Article  CAS  Google Scholar 

  • Zhang, H. H., He, P. J., & Shao, L. M. (2010). Ammonia volatilization, N2O and CO2 emissions from landfill leachate-irrigated soils. Waste Management, 30, 119–124.

    Article  CAS  Google Scholar 

  • Zhang, H. H., Tian, J. S., Zhang, Y. M., Wu, Z. L., Hu, Y., & Li, D. L. (2012). Removal of phosphorus and nitrogen from domestic wastewater using a mineralized refuse-based bioreactor. Environmental Technology, 33(2), 173–181.

    Article  Google Scholar 

  • Zhao, Y. C., Lou, Z. Y., Guo, Y. L., & Xu, D. M. (2007). Treatment of sewage using an aged-refuse-based bioreactor. Journal of Environmental Management, 82, 32–38.

    Article  CAS  Google Scholar 

  • Zhu, D. L., Sun, C., Zhang, H. H., Wu, Z. L., Jia, B., & Zhang, Y. (2012). Roles of vegetation, flow type and filled depth on livestock wastewater treatment through multi-level mineralized refuse-based constructed wetlands. Ecological Engineering, 39, 7–15.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the ‘Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues’ of the Chinese Academy of Sciences, grant no. XDA05020602, the State Key Laboratory of Freshwater Ecology and Biotechnology (no. 2013FB08), and the Natural Science Foundation of China (no. 41005090)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houhu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, T., Zhang, H., Feng, K. et al. Landfill CH4 Oxidation, N2O, and CO2 Emissions from Wastewater-Incubated Mineralised Refuse: The Effect of Heavy Metal Addition and Environmental Factor Variations. Water Air Soil Pollut 224, 1600 (2013). https://doi.org/10.1007/s11270-013-1600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1600-7

Keywords

Navigation