Skip to main content
Log in

Kinetics and Thermodynamics of Sorption for As(V) on the Porous Biomorph-Genetic Composite of α-Fe2O3/Fe3O4/C with Eucalyptus Wood Hierarchical Microstructure

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A novel porous biomorph-genetic composite of α-Fe2O3/Fe3O4/C (PBGC-Fe/C) with eucalyptus wood template was prepared, characterized and tested for its sorption capacity of As(V) from aqueous solution. The result indicated that the PBGC-Fe/C material retained the hierarchical porous structure of eucalyptus wood with three different types of pores (widths 70∼120, 4.1∼6.4 and 0.1∼1.3 μm) originating from vessels, fibres and pits of the wood, respectively. Its surface area was measured to be 59.2 m2/g. With increasing initial As(V) concentration from 5 to 100 mg/L, the amounts of As(V) sorbed on the pulverized PBGC-Fe/C sorbent (<0.149 mm) increased from 0.50 to 4.01 mg/g at 25 °C, from 0.50 to 4.83 mg/g at 35 °C and from 0.50 to 4.19 mg/g at 45 °C, and the corresponding removal rates decreased from 99.97 to 40.10 % at 25 °C, 99.95 to 48.40 % at 35 °C and 99.92 to 42.05 % at 45 °C. At the initial concentrations of 5, 10 and 50 mg/L, the sorption capacities for the unpulverized PBGC-Fe/C sorbent (>3 mm) were determined to be 0.50, 0.99 and 2.49 mg/g, respectively, which exhibited a similar average value to those of fine particles or nanoparticles of iron oxides. The sorption could well be described by the pseudo-second-order kinetic equation. The equilibrium data were found to follow Freundlich as well as Langmuir isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aredes, S., Klein, B., & Pawlik, M. (2012). The removal of arsenic from water using natural iron oxide minerals. Journal of Cleaner Production, 29–30, 208–213.

    Article  Google Scholar 

  • Bothe, J. V., & Brown, P. W. (1999). Arsenic immobilization by calcium arsenate formation. Environmental Science and Technology, 33, 3806–3811.

    Article  CAS  Google Scholar 

  • Cantalini, C., & Pelino, M. (1992). Microstructure and humidity-sensitive characteristics of a-Fe2O3 ceramic sensor. Journal of the American Ceramic Society, 75, 546–551.

    Article  CAS  Google Scholar 

  • Chowdhury, S. R., & Yanful, E. K. (2010). Arsenic and chromium removal by mixed magnetite–maghemite nanoparticles and the effect of phosphate on removal. Journal of Environmental Management, 91, 2238–2247.

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences, and uses. Weinheim: Wiley-VCH.

    Google Scholar 

  • Crini, G. (2008). Kinetic, equilibrium studies on the removal of cationic dyes from aqueous solution by sorption onto a cyclodextrin polymer. Dyes and Pigments, 77, 415–426.

    Article  CAS  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Doğan, M., Özdemir, Y., & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl methylene blue dyes onto sepiolite. Dyes and Pigments, 75, 701–713.

    Article  Google Scholar 

  • Fulladosa, E., Murat, J. C., Martinez, M., & Villaescusal, I. (2004). Effect of pH on arsenate and arsenite toxicity to luminescent bacteria (Vibrio fischeri). Archives of Environmental Contamination and Toxicology, 46, 176–182.

    CAS  Google Scholar 

  • Giménez, J., Martínez, M., de Pablo, J., Rovira, M., & Duro, L. (2007). Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141, 575–580.

    Article  Google Scholar 

  • Guo, H., Stüben, D., & Berner, Z. (2007). Removal of arsenic from aqueous solution by natural siderite and hematite. Applied Geochemistry, 22, 1039–1051.

    Article  CAS  Google Scholar 

  • Habuda-Stanić, M., Kalajdžić, B., Kuleš, M., & Velić, N. (2008). Arsenite and arsenate sorption by hydrous ferric oxide/polymeric material. Desalination, 229, 1–9.

    Article  Google Scholar 

  • Han, C., Li, H., Pu, H., Yu, H., Deng, L., Huang, S., et al. (2013). Synthesis and characterization of mesoporous alumina and their performances for removing arsenic(V). Chemical Engineering Journal, 217, 1–9.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety Environ Protect, 76, 183–191.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Huang, X. (2004). Intersection of isotherms for phosphate adsorption on hematite. Journal of Colloid and Interface Science, 271, 296–307.

    Article  CAS  Google Scholar 

  • Karagas, M. R., Le, C. X., Morris, S., Blum, J., Lu, X., & Spate, V. (2001). Markers of low level arsenic exposure for evaluating human cancer risks in the US population. International Journal of Occupational Medicine and Environmental Health, 14, 171–175.

    CAS  Google Scholar 

  • Lǚ, J., Liu, H., Liu, R., Zhao, X., Sun, L., & Qu, J. (2013). Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technology, 233, 146–154.

    Article  Google Scholar 

  • Luther, S., Borgfeld, N., Kim, J., & Parsons, J. G. (2012). Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchemical Journal, 101, 30–36.

    Article  CAS  Google Scholar 

  • Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2011). Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination, 281, 93–99.

    Article  CAS  Google Scholar 

  • Mckay, G., & Poots, V. J. P. (1980). Kinetics and diffusion process in colour removal from effluent using wood as an adsorbent. Journal of Chemical Technology and Biotechnology, 30, 279–292.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142, 1–53.

    Article  CAS  Google Scholar 

  • Muñiz, G., Fierro, V., Celzard, A., Furdin, G., Gonzalez-Sánchez, G., & Ballinas, M. L. (2009). Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II). Journal of Hazardous Materials, 165, 893–902.

    Article  Google Scholar 

  • Ohe, K., Oshima, T., & Baba, Y. (2010). Adsorption of arsenic using high surface area magnetites. Environmental Geochemistry and Health, 32, 283–286.

    Article  CAS  Google Scholar 

  • Okoye, A. I., Ejikeme, P. M., & Onukwuli, O. D. (2010). Lead removal from wastewater using fluted pumpkin seed shell activated carbon: adsorption modeling and kinetics. International journal of Environmental Science and Technology, 7, 793–800.

    CAS  Google Scholar 

  • Parga, J. R., Cocke, D. L., Valenzuela, J. L., Gomes, J. A., Kesmez, M., Irwin, G., et al. (2005). Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México. Journal of Hazardous Materials, 124, 247–254.

    Article  CAS  Google Scholar 

  • Parsons, G. J., Lpoez, L. M., Peralta-Videa, R. J., & Gardea-Torresdey, L. J. (2009). Determination of arsenic (III) and arsenic (V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchemical Journal, 91, 100–106.

    Article  CAS  Google Scholar 

  • Presas, M., Pastor, J. Y., LLorca, J., Arellano-López, A. R., Martínez-Fernández, J., & Sepúlveda, R. (2006). Microstructure and fracture properties of biomorphic SiC. International Journal of Refractory Metals and Hard Materials, 24, 49–54.

    Article  CAS  Google Scholar 

  • Sabbatini, P., Rossi, F., Thern, G., Marajofsky, A., & de Cortalezzi, M. M. F. (2010). Iron oxide adsorbers for arsenic removal: a low cost treatment for rural areas and mobile applications. Desalination, 251, 184–192.

    Google Scholar 

  • Shipley, H. J., Yean, S., Kan, A. T., & Tomson, M. B. (2009). Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature. Environmental Toxicology and Chemistry, 28, 509–515.

    Article  CAS  Google Scholar 

  • Sieber, H. (2005). Biomimetic synthesis of ceramics and ceramic composites. Materials Science and Engineering A, 412, 43–47.

    Article  Google Scholar 

  • Simeonidis, K., Gkinis, T., Tresintsi, S., Martinez-Boubeta, C., Vourlias, G., Tsiaoussis, I., et al. (2011). Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chemical Engineering Journal, 168, 1008–1015.

    Article  CAS  Google Scholar 

  • Singh, D. B., Prasad, G., & Rupainwar, D. C. (1996). Adsorption technique for the treatment of As(V)-rich effluents. Colloids Surfaces A, 111, 49–56.

    Article  CAS  Google Scholar 

  • Sinha, S., Amy, G., Yoon, Y., & Her, N. (2011). Arsenic removal from water using various adsorbents: magnetic ion exchange resins, hydrous ion oxide particles, granular ferric hydroxide, activated alumina, sulfur modified iron, and iron oxide-coated microsand. Environmental Engineer Research, 16, 165–173.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburg, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (1989). Kinetics of soil chemical processes. New York: Academic.

    Google Scholar 

  • Su, C., & Puls, R. W. (2008). Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation. Water, Air, and Soil Pollution, 193, 65–78.

    Article  CAS  Google Scholar 

  • Sverjensky, D. A. (1994). Zero-point-of-charge prediction from crystal chemistry and salvation theory. Geochimica et Cosmochimica Acta, 58, 3123–3129.

    Article  CAS  Google Scholar 

  • Tuutijärvi, T., Repo, E., Vahala, R., Sillanpää, M., & Chen, G. (2012). Effect of competing anions on arsenate adsorption onto maghemite nanoparticles. Chinese Journal of Chemical Engineering, 20, 505–514.

    Article  Google Scholar 

  • Us, E. P. A. (1998). Locating and estimating air emissions from sources of arsenic and arsenic compounds, EPA-454-R98-013, Office of Air Quality Planning and Standards. Washington, DC: USEPA.

    Google Scholar 

  • Wang, C. H., Hsiao, C. K., Chen, C. L., Hsu, L. I., Chiou, H. Y., Chen, S. Y., et al. (2007). A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases. Toxicology and Applied Pharmacology, 222, 315–326.

    Article  Google Scholar 

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division ASCE, 89, 31–60.

    Google Scholar 

  • Weng, C. H., Lin, Y. T., Yeh, C. L., & Sharma, Y. C. (2010). Magnetic Fe3O4 nanoparticles for adsorptive removal of acid dye (new coccine) from aqueous solutions. Water Science and Technology, 62, 844–851.

    Article  CAS  Google Scholar 

  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., et al. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment, 424, 1–10.

    Article  CAS  Google Scholar 

  • Yang, X. Y., & Al-Duri, B. (2005). Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. Journal of Colloid and Interface Science, 287, 25–34.

    Article  CAS  Google Scholar 

  • Yang, X. Y., Otto, S. R., & Al-Duri, B. (2003). Concentration-dependent surface diffusivity model (CDSDM): numerical development and application. Chemical Engineering Journal, 94, 199–209.

    Article  CAS  Google Scholar 

  • Yean, S., Cong, L., Yavuz, C. T., Mayo, J. T., Yu, W. W., Kan, A. T., et al. (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20, 3255–3264.

    Article  CAS  Google Scholar 

  • Zhang, J., & Stanforth, R. (2005). Slow adsorption reaction between arsenic species and goethite (α-FeOOH): diffusion or heterogeneous surface reaction control. Langmuir, 21, 2895–2901.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The manuscript has greatly benefited from insightful comments by the editor and anonymous reviewers. The authors thank the Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for the research assistance and the financial supports from the National Natural Science Foundation of China (NSFC40773059, NSFC41263009), the Guangxi Science and Technology Development Project (GuiKeZhong1298002-3) and the Provincial Natural Science Foundation of Guangxi (2012GXNSFDA053022, 2011GXNSFF018003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinian Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Zhu, Z., Chen, Y. et al. Kinetics and Thermodynamics of Sorption for As(V) on the Porous Biomorph-Genetic Composite of α-Fe2O3/Fe3O4/C with Eucalyptus Wood Hierarchical Microstructure. Water Air Soil Pollut 224, 1589 (2013). https://doi.org/10.1007/s11270-013-1589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1589-y

Keywords

Navigation