Skip to main content

Biogenic Material With Iron Nanoparticles for As(V) Removal

  • Chapter
  • First Online:
Plant Nanobionics

Abstract

In this work, the chemical conditioning of the pineapple peel and its subsequent pyrolysis process to obtain a carbonaceous matrix fitted with iron nanoparticles are presented. The material was characterized by different analytical techniques, and the sorption capacity of As(V) in aqueous phase was evaluated. The pineapple peel (PP) was analyzed by neutron activation analysis (NAA), showing the presence of elements such as Al, Br, Ce, Co, Cr, Cs, Eu, Hf, K, Mg, Mn, Na, Rb, Sb, Sc, and Zn. These elements are involved in the sorption process of As(V), forming active sites on the surface. By means of the chemical conditioning of the pineapple peel and after a pyrolysis process of 650 °C, an amorphous carbonaceous material (C-180) was obtained with spherical nanoparticles distributed homogeneously on the surface with an average diameter of 39 nm, specific area of 167 m2/g with 7 ± 1 sites/nm2, and isoelectric point of pHi = 11. The maximum percent removal was 77.39% with a maximum retention capacity of 5.73 mg of As/g and an initial concentration of 30 mg/L. The isotherm in relation with the concentration was adjusted to the Freundlich model, indicating that the sorption is carried out through a multilayer chemisorption process, in specific active sites and in a heterogeneous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhassan E, Agbemava SE, Adoo NA, Agbodemegbe VY, Bansah CY, Della R, Appiah GI, Kombat EO, Nyarko BJB (2011) Determination of trace elements in Ghanaian Shea butter and shea nut by neutron activation analysis (NAA). Res J Appl Sci Eng Technol 3(1):22–25

    CAS  Google Scholar 

  • Altundoğan S, Altundoğan H, Tümen S, Bildik F (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag 22:357–363

    Article  Google Scholar 

  • Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plant water Hyacint (Eichhornia crassipes) and lesser duckweed (Lemma minor). Bioresour Technol 99:8436–8440

    Article  CAS  Google Scholar 

  • Araújo R, Meira Castro AC, Fiúza A (2015) The use of nanoparticles in soil and water remediation processes. Mater Today Proc 2:315–320

    Article  Google Scholar 

  • Bang S, Korfiatis GP, Meng X (2005) Removal of arsenic from water by zero-valent iron. J Hazard Mater 121:61–67

    Article  CAS  Google Scholar 

  • Barr TL (1991) Recent advances in X-ray photoelectron spectroscopy studies of oxides. J Vac Sci Technol A 9(3):1793–1805

    Article  CAS  Google Scholar 

  • Baskan B, Pala MA (2010) A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 254:42–48

    Article  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317

    Article  CAS  Google Scholar 

  • Bilal Shakoor M, Khan Niazi N, Bibi I, Shahid M, Sharif F, Bashir S, Shaheen SM, Wang H, Tsang DCW, Sik Ok Y, Rinklebe J (2018) Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci Total Environ 645:1444–1455

    Article  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  • Bundschuh J, Litter M, Ciminelli VST, Morgada ME, Cornejo L, Garrido Hoyos S, Hoinkis J, Alarcón-Herrera MT, Armienta MA, Bhattacharya P (2010) Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America -a critical analysis. Water Res 44:5828–5845

    Article  CAS  Google Scholar 

  • Chakrabarti D, Singh SK, Rashid MH, Mahmudur Rahman M (2018) Arsenic: occurrence in groundwater. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/B978-0-12-409548-9.10634-7

    Google Scholar 

  • Chen YZ, Yang CT, Ching CB, Xu R (2008) Inmobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysists. Langmuir 24:8877–8884

    Article  CAS  Google Scholar 

  • Chena S, Wu D (2018) Adapting ecological risk valuation for natural resource damage assessment in water pollution. Environ Res 164:85–92

    Article  Google Scholar 

  • Chenhall BE, Ellis J, Crisp PT, Payling R, Tandon RK, Baker RS (1985) Application of X-ray photoelectron spectroscopy to the analysis of stainless-steel welding aerosols. Appl Surf Sci 20:527–537

    Article  Google Scholar 

  • Choong TSY, Chuaha TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • D’Eeckenbrugge GC, Leal F (2003) Chapter 2: Morphology, anatomy and taxonomy. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple. Botany, production and uses, 1st edn. CABI Publishing, Oxon, UK, pp 13–32

    Google Scholar 

  • Deng JH, Zhang XR, Zeng GM, Gong JL, Niu QY, Liang J (2013) Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic grapheme oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200

    Article  CAS  Google Scholar 

  • Domènech X, Peral J (2006) Química Ambiental de Sistemas Terrestres. Reverté, España, pp 1–34

    Google Scholar 

  • Gul Kazi T, Dev Brahman K, Ahmed Baig J, Imran Afridi H (2018) A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater. J Hazard Mater 357:159–167

    Article  Google Scholar 

  • Gutiérrez F, Rojas Bourillón A, Dormond H, Poore M, Wing Ching-Jones R (2003) Características nutricionales y fermentativas de mezclas de desechos de piña y avícolas. Agron Costarric 27:79–89

    Google Scholar 

  • Gutiérrez-Muñiz OE, García-Rosales G, Ordoñez-Regil E, Olguin MT, Cabral-Prieto A (2013) Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As (V) from water. J Environ Manag 114:1–7

    Article  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Huang Q, Liu Q, Lin L, Li FJ, Han Y, Songa ZG (2018) Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles. Ecotoxicol Environ Saf 159:261–271

    Article  CAS  Google Scholar 

  • HYPERMET-PC (2008). Versión 5.01. Copyright 1995–1998. Institute of Isotopes. H-1525, Budapest, Hungary

    Google Scholar 

  • International Agency for Research on Cancer (IARC) (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1

    Google Scholar 

  • Ishimaru K, Hata T, Bronsveld P, Meier D, Imamura Y (2007) Spectroscopic analysis of carbonization behavior of wood, cellulose and lignin. J Mater Sci 42:122–129

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Introduction, Chapters 6, 8, 9, 11–13, 17, 22. Trace Elements in Soils and Plants. Taylor and Francis Group, LLC. XXVII, 130, 148–149, 155–158, 172, 187–190, 207–211, 220–223, 231–234, 281–287, 396–397

    Google Scholar 

  • Kamal N, Koju X, Song Q, Wang Z, Hu C (2018) Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms. Environ Pollut 240:255–266

    Article  Google Scholar 

  • Khan ST, Malik A (2018) Engineered nanomaterials for water decontamination and purification: from lab to products. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2018.09.091

    Article  CAS  Google Scholar 

  • Kumar Mandal B, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  Google Scholar 

  • Leusa K, Folens K, Ricci Nicomel N, Pereza JPH, Filippousi M, Meledina M, Dîrtu MM, Turner S, Van Tendeloo G, Garciad Y, Du Laing G, Van Der Voort P (2018) Removal of arsenic and mercury species from water by covalent triazine framework encapsulated γ-Fe2O3 nanoparticles. J Hazard Mater 353:312–319

    Article  Google Scholar 

  • Lim H, Liu Y, Yong Kim H, Ick Sona D (2018) Facile synthesis and characterization of carbon quantum dots and photovoltaic applications. Thin Solid Films 630:672–677

    Article  Google Scholar 

  • Litter MI, Morgada ME, Bundschuh J (2010) Possible treatments for arsenic removal in Latin America waters for human consumption. Environ Pollut 158:1105–1118

    Article  CAS  Google Scholar 

  • Liu Z, Zhang FS (2010) Nano-zerovalent iron contained porous carbons developed from waste biomass for the adsorption and dechlorination of PCB’s. Bioresour Technol 101:2562–2564

    Article  CAS  Google Scholar 

  • Liu Z, Zhang FS, Sasai R (2010) Arsenate removal from water using Fe3O4-loaded activated carbon prepared from waste biomass. Chem Eng J 160:57–62

    Article  CAS  Google Scholar 

  • López-Téllez G, Barrera-Díaz CE, Balderas-Hernández P, Roa-Morales G, Bilyeu B (2011) Removal of hexavalent chromium in aquatic solutions by iron nanoparticles embedded in orange peel pith. Chem Eng J 173:480–485

    Article  Google Scholar 

  • Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    Article  CAS  Google Scholar 

  • Malitesta C, Razzini G, Peraldo Bicelli L, Sabbatini L (1987) Photoelectrochemical behaviour and XPS characterization of (Ti, Al, V)O2 film obtained by non-conventional anodic oxidation of a commercial Ti-Al-V alloy. Int J Hydrog Energy 12(4):219–225

    Article  Google Scholar 

  • Martínez-Villafañe JF, Montero-Ocampo C, García-Lara AM (2009) Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from groundwater. J Hazard Mater 172:1617–1622

    Article  Google Scholar 

  • Max Lu GQ (2018) Nanomaterials for clean air, energy and water. Prog Nat Sci Mater Int 28:97–98

    Article  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents-a critical review. J Hazard Mater 142:1–53

    Article  CAS  Google Scholar 

  • Mostafa MG, Chen YH, Jean JS, Liu CC, Lee YC (2011) Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J Hazard Mater 187:89–95

    Article  CAS  Google Scholar 

  • Onorevoli B, Pereira da Silva Maciel G, Machado ME, Corbelini V, Caramão EB, Jacques RA (2018) Characterization of feedstock and biochar from energetic tobacco seed waste pyrolysis and potential application of biochar as an adsorbent. J Environ Chem Eng 6:1279–1287

    Article  CAS  Google Scholar 

  • Poole CP Jr, Owens FJ (2007) Capítulo 4 Propiedades de las Nanopartículas Individuales. In: Editorial Reverté (ed) Introducción a la Nanotecnología, 1st edn, pp 79–111

    Google Scholar 

  • Prathna TC, Kumar Sharma S, Kennedy M (2018) Nanoparticles in household level water treatment: an overview. Sep Purif Technol 199:260–270

    Article  CAS  Google Scholar 

  • Ramos MAV, Yan W, Li X-QN, Koel BE, Zhang W (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J Phys Chem C 113:14591–14594

    Article  CAS  Google Scholar 

  • Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2011) Servicio de Información Agroalimentaria y Pesquera. Estacionalidad de Piña:1–6

    Google Scholar 

  • Sen M, Manna A, Pal P (2010) Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. J Membr Sci 354:108–113

    Article  CAS  Google Scholar 

  • Singh B, Fang Y, Cowie BCC, Thomsen L (2014) NEXAFS and XPS characterization of carbon functional groups of fresh and aged biochars. Org Geochem 77:1–10

    Article  CAS  Google Scholar 

  • Strathman H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264:268–288

    Article  Google Scholar 

  • Sua H, Yea Z, Hmidi N (2017) High-performance iron oxide-graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf A Physicochem Eng Aspects 522:161–172

    Article  Google Scholar 

  • Taherymoosavi S, Verheye V, Munro P, Joseph S, Reynolds A (2017) Characterization of organic compounds in biochars derived from municipal solid waste. Waste Manag 67:131–142

    Article  CAS  Google Scholar 

  • Tamayo A et al (2018) Further characterization of the surface properties of the SiC particles through complementarity of XPS and IGC-ID techniques. Bol Soc Esp Cerám Vidr. https://doi.org/10.1016/j.bsecv.2018.04.003

    Article  Google Scholar 

  • Technical Fact Sheet: Final Rule for arsenic in drinking water (2001) Unites States Environmental Protection Agency. EPA 815-F-00-016. Office of Water. January. https://nepis.epa.gov/Exe/ZyPdf.cgi?Dockey=20001XXE.txt

  • Xua H, Wanga X, Burchiel SW (2018) Toxicity of environmentally-relevant concentrations of arsenic on developing T lymphocyte. Environ Toxicol Pharmacol 62:107–113

    Article  Google Scholar 

  • Zhang M, Ji J, Huang K, Hou X, Zheng C (2018) Facile electrochemical synthesis of nano iron porous coordination polymer using scrap iron for simultaneous and cost-effective removal of organic and inorganic arsenic. Chin Chem Lett 29:456–460

    Article  CAS  Google Scholar 

  • Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Rosales, G., Longoria-Gándara, L.C., Avila-Pérez, P., Flores-Cruz, D.O., López-Reyes, C. (2019). Biogenic Material With Iron Nanoparticles for As(V) Removal. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16379-2_3

Download citation

Publish with us

Policies and ethics