Skip to main content
Log in

A Novel Bacterium That Degrades Aroclor-1254 and Its bphC Gene Encodes an Extradiol Aromatic Ring Cleavage Dioxygenase (EARCD)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The congener-specific degradation pattern of polychlorinated biphenyls (PCBs) in Aroclor 1254 was investigated using a novel bacterial strain, Stenotrophomonas sp. JSG1, and it was accelerated by the surfactant, β-cyclodextrin. In addition, 4-chorobenzoic acid (CBA) degradation was also confirmed by the estimation of CBA depletion rate, microbial growth, and release of free chloride ion in mineral medium. Metal ions such as Ni2+, Hg2+ Ba2+, Cu2+, and NaCl (>4 %) were found greatly influencing the PCB degradation. However, Ca2+, Mg2+, Fe2+, and Mn2+ have not shown any impact on biodegradation. The bphC gene, which encodes an extradiol aromatic ring cleavage dioxygenase was successfully amplified and cloned. Phylogeny-based pairwise alignment of nucleotide sequences suggested that the cloned gene belongs to the extradiol dioxygenase family, but it showed high diversity to the traditional bphC gene. Results of the present investigation revealed that the Stenotrophomonas sp. JSG1 is an effective novel bacterium, which can be used in the PCB remediation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adebusoye, S. A., Picardal, F. W., Fuqua, C., Ilori, M. O., & Amund, O. O. (2008). Characterization of multiple novel aerobic polychlorinated biphenyl (PCB) utilizing bacterial strains indigenous to contaminated tropical African soils. Biodegradation, 19, 145–159.

    Article  CAS  Google Scholar 

  • Angle, J. S., & Chaney, R. L. (1989). Cadmium resistance screening in nitrilotriacetate-buffered minimal media. Applied and Environmental Microbiology, 55, 2101–2104.

    CAS  Google Scholar 

  • Arnett, C. M., Parales, J. V., & Haddock, J. D. (2000). Influence of chlorine substituents on rates of oxidation of chlorinated biphenyls by the biphenyl dioxygenase of Burkholderia sp. strain LB400. Applied and Environmental Microbiology, 66, 2928–2933.

    Article  CAS  Google Scholar 

  • Bai, G., Brusseau, M. L., & Miller, R. M. (1997). Biosurfactant enhanced removal of residual hydrocarbon from soil. Journal of Contaminant Hydrology, 25, 157–170.

    Article  CAS  Google Scholar 

  • Barber, J. L., Sweetman, A. J., Wijk, D. V., & Jones, K. C. (2005). Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. The Science of the Total Environment, 349, 1–44.

    Article  CAS  Google Scholar 

  • Bedard, D. L., Unterman, R., Bopp, L. H., Brennan, M. J., Haberl, M. L., & Johnson, C. (1986). Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Applied and Environmental Microbiology, 51, 761–768.

    CAS  Google Scholar 

  • Boyle, A. W., Silvin, C. J., Hassett, J. P., Nakas, J. P., & Tanenbaum, S. W. (1992). Bacterial PCB biodegradation. Biodegradation, 3, 285–298.

    Article  CAS  Google Scholar 

  • Bergmann, J. G., & Sanik, J. (1957). Determination of trace amounts of chlorine in naphtha. Analytical Chemistry, 29, 241–243.

    Article  CAS  Google Scholar 

  • Chae, J. C., Kim, Y., Kim, Y. C., Zylstra, G. J., & Kim, C. K. (2000). Genetic structure and functional implication of the fcb gene cluster for hydrolytic dechlorination of 4-chlorobenzoate from Pseudomonas sp. DJ-12. Gene, 258, 109–116.

    Article  CAS  Google Scholar 

  • Coleman, N. V., Mattes, T. E., Gossett, J. M., & Spain, J. C. (2002). Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Applied and Environmental Microbiology, 68, 2726–2730.

    Article  CAS  Google Scholar 

  • Eltis, L., & Bolin, J. (1996). Evolutionary relationships among extradiol dioxygenases. Journal of Bacteriology, 178, 5930–5937.

    CAS  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Article  Google Scholar 

  • Ferrer, M. R., Ruiz, B. F., & Ramos, C. A. (1986). Utilization of the herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid) by soil bacteria. Agrochimica, 30, 458–464.

    CAS  Google Scholar 

  • Ganesh-Kumar, S., Solomon, R. D. J., Kalimuthu, K., & Vimalan, J. (2010). Evidence of aerobic degradation of polychlorinated biphenyl as growth substrate by new bacteria Stenotrophomonas sp. JSG1 and Cupriavidus taiwanensis JSG2. Carpathian Journal of Earth and Envionmental Science, 5, 169–176.

    Google Scholar 

  • Gibello, A., Ferrer, E., Martin, M., & Garrido-Pertierra, A. (1994). 3,4-Dihydroxy phenylacetate 2,3-dioxygenase from Klebsiella pneumoniae, a Mg21-containing dioxygenase involved in aromatic catabolism. The Biochemical Journal, 301, 145–150.

    CAS  Google Scholar 

  • Haggblom, M. M. (1992). Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiology Review, 103, 29–72.

    Article  CAS  Google Scholar 

  • Hernandez, B. S., Higson, F. K., Kondrat, R., & Focht, D. D. (1991). Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida P111. Applied and Environmental Microbiology, 57, 3361–3366.

    CAS  Google Scholar 

  • Li, A., Qu, Y., Zhou, J., & Ma, F. (2009). Characterization of a newly isolated biphenyl-degrading bacterium Dyella ginsengisoli LA-4. Applied Biochemistry and Biotechnology, 159, 687–695.

    Article  CAS  Google Scholar 

  • Liebert, C. A., Barkay, T., & Turner, R. R. (1991). Acclimation of aquatic microbial communities to Hg (II) and CH3Hg+ in polluted fresh water ponds. Microbial Ecology, 21, 139–149.

    Article  CAS  Google Scholar 

  • Katayama, A., Bhula, R., Burns, G. R., Carazo, E., Felsot, A., Hamilton, D., Harris, C., Kim, Y. H., Kleter, G., Koedel, W., Linders, J., Peijnenburg, J. G. M. W., Sabljic, A., Stephenson, R. G., Racke, D. K., Rubin, B., Tanaka, K., Unsworth, J., & Wauchope, R. D. (2012). Bioavailability of xenobiotics in the soil environment. Reviews of Environmental Contamination and Toxicology, 203, 1–86.

    Article  Google Scholar 

  • Kim, S., & Picardal, F. W. (2000). A novel bacterium that utilizes monochlorobiphenyls and 4-chlorobenzoate as growth substrates. FEMS Microbiology Letters, 185, 225–229.

    Article  CAS  Google Scholar 

  • Miguez, C. B., Greer, C. W., & Ingram, J. M. (1990). Degradation of monochlorobenzoic and dichlorobenzoic acid isomers by two natural isolates of Alcaligenes denitrificans. Archives of Microbiology, 154, 139–143.

    Article  CAS  Google Scholar 

  • Mondello, F. J., Turcich, M. P., Lobos, J. H., & Erickson, B. D. (1997). Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Applied and Environmental Microbiology, 63, 3096–3103.

    CAS  Google Scholar 

  • Nies. (1999). Microbial heavy metal resistance. Applied Microbiology and Biotechnology, 67, 730–750.

    Article  Google Scholar 

  • Pieper, D. H. (2005). Aerobic degradation of polychlorinated biphenyls. Applied Microbiology and Biotechnology, 67, 170–191.

    Article  CAS  Google Scholar 

  • Pitcher, G. S., Saunders, N. A., & Owen, R. J. (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in Applied Microbiology, 8, 151–156.

    Article  CAS  Google Scholar 

  • Providenti, M. A., Lee, H., & Trevors, J. T. (1993). Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of Industrial Microbiology and Biotechnology, 12, 379–395.

    Article  CAS  Google Scholar 

  • Reineke, W., & Knackmuss, H. J. (1980). Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. Journal of Bacteriology, 142, 467–473.

    CAS  Google Scholar 

  • Rodrigues, J. L. M., Kachel, C. A., Aiello, M. R., Quenssen, J. F., Maltseva, O. V., Tsoi, T. V., & Tiedje, J. M. (2006). Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400 (ohb) and Rhodococcus sp. strain RHA1 (fcb). Applied and Environmental Microbiology, 72, 2476–2482.

    Article  CAS  Google Scholar 

  • Sandrin, T. R., & Maier, R. M. (2003). Impact of metals on the biodegradation of organic pollutants. Environmental Health Perspectives, 111, 1093–1101.

    Article  CAS  Google Scholar 

  • Stratford, J., Wright, M. A., Reineke, W., Mokross, H., Havel, J., Knowles, C. J., & Robinson, G. R. (1996). Influence of chlorobenzoates on the utilization of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralizing hybrid bacterial strains. Achieves of Microbiology, 165, 213–218.

    CAS  Google Scholar 

  • Sylvestre, M., Mailhiot, K., Ahmad, D., & Masse, R. (1989). Isolation and preliminary characterization of a 2 chlorobenzoate degrading Pseudomonas. Canadian Journal of Microbiology, 35, 439–443.

    Article  CAS  Google Scholar 

  • Takami, H., Kudo, T., & Horikoshi. (1997). Isolation of extradiol dioxygenase genes that are phylogenetically distant from other meta-cleavage dioxygenase genes. Bioscience, Biotechnology, and Biochemistry, 61, 530–532.

    Article  CAS  Google Scholar 

  • Vaillancourt, F. H., Labbe, G., Drouin, N. M., Fortin, P. D., & Eltis, L. D. (2002). The mechanism-based inactivation of 2,3-dihydroxybiphenyl. The Journal of Biological Chemistry, 277, 2019–2027.

    Article  CAS  Google Scholar 

  • Volkering, F., Breure, A. M., Van Andel, J. G., & Rulkens, W. H. (1995). Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 61, 1699–1705.

    CAS  Google Scholar 

  • Vrana, B., Dercova, K., Balaz, S., & Sevcikova, A. (1996). Effect of chlorobenzoates on the degradation of polychlorinated biphenyls (PCB) by Pseudomonas stutzeri. World Journal of Microbiology and Biotechnology, 12, 323–326.

    Article  Google Scholar 

  • Yi, H. R., Min, K. H., Kim, C. K., & Ka, J. O. (2000). Phylogenetic and phenotypic diversity of 4-chlorobenzoate-degrading bacteria isolated from soils. FEMS Microbiology Ecology, 31, 53–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the ‘Council of Scientific & Industrial Research-Human resource Development group’ (CSIR-HRDG) and the ‘Department of Biotechnology’ (DBT), India, which we gratefully thank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon RobinsonDavid Jebakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh-Kumar, S., Kalimuthu, K. & Jebakumar, S.R. A Novel Bacterium That Degrades Aroclor-1254 and Its bphC Gene Encodes an Extradiol Aromatic Ring Cleavage Dioxygenase (EARCD). Water Air Soil Pollut 224, 1587 (2013). https://doi.org/10.1007/s11270-013-1587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1587-0

Keywords

Navigation