Skip to main content
Log in

Retention Effects of Soil Humic Substances on the Diffusive Transportation of Metal Ions During Sediment Porewater Membrane Dialysis Sampling

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In situ sampling techniques such as membrane dialysis are widely applied to the monitoring of heavy metal contamination in water-saturated environments. In this study, batch experiments were conducted to investigate the influence of humic substances (HS) on the diffusive transportation of metal ions across sampling membranes. The presence of HS substantially slowed the transportation of metal ions by 22.2, 20.3, 17.4, 16.6, and 14.9 % for Zn2+, Cu2+, Ni2+, Co2+, and Mn2+, respectively, in the 100-mg/L HS-amended treatments relative to the treatments without HS under acidic conditions (pH = 5.0). The retention effect of HS on the metal ions appeared to be relieved at a higher pH of 8.5. However, HS also slowed the transportation of metal ions (Cu2+, Zn2+, Ni2+ and Co2+) into the sampling cells when membranes soaked previously in porewater solution. The retention effects of HS can be attributed to the enhanced adsorption of metal ions on the surfaces of the membranes. Further study in saturated sediments verified that the membrane dialysis technique could underestimate the concentrations of metal ions by 13.3–40.2 % at the presences of HS. These findings suggest that collected porewater data using the membrane dialysis technique should be interpreted with caution with the consideration of in situ geochemical conditions such as HS or pH in water-saturated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Abri, M., Dakheel, A., Tizaoui, C., & Hilal, N. (2010). Combined humic substance and heavy metals coagulation, and membrane filtration under saline conditions. Desalination, 253, 46–50.

    Article  CAS  Google Scholar 

  • Bendell-Young, L., & Pick, F. R. (1997). Base cation composition of pore water, peat and pool water of fifteen Ontario peatlands: implications for peatland acidification. Water, Air, and Soil Pollution, 96, 155–173.

    CAS  Google Scholar 

  • Bondareva, L. (2011). The relationship of mineral and geochemical composition to artificial radionuclide partitioning in Yenisei river sediments downstream from Krasnoyarsk. Environmental Monitoring and Assessment, 184, 3831–3847.

    Article  Google Scholar 

  • Chakraborty, P. (2010). Study of cadmium–humic interactions and determination of stability constants of cadmium–humate complexes from their diffusion coefficients obtained by scanned stripping voltammetry and dynamic light scattering techniques. Analytica Chimica Acta, 659, 137–143.

    Article  CAS  Google Scholar 

  • Cui, L., Yao, M., Ren, B., & Zhang, K. S. (2011). Sensitive and versatile detection of the fouling process and fouling propensity of proteins on polyvinylidene fluoride membranes via surface-enhanced Raman spectroscopy. Analytical Chemistry, 83, 1709–1716.

    Article  CAS  Google Scholar 

  • Dolgova, Y. E., & Kudryavtseva, V. A. (2006). Application of new types of fibrous sorbents for sampling of dissolved species of heavy metals in natural waters. Russian Journal of Applied Chemistry, 79, 279–283.

    Article  CAS  Google Scholar 

  • Feyte, S., Tessier, A., Gobeil, C., & Cossa, D. (2010). In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Applied Geochemistry, 25, 984–995.

    Article  CAS  Google Scholar 

  • Guedron, S., Cossa, D., Grimaldi, M., & Charlet, L. (2011). Methylmercury in tailings ponds of Amazonian gold mines (French Guiana): field observations and an experimental flocculation method for in situ remediation. Applied Geochemistry, 26, 222–229.

    Article  CAS  Google Scholar 

  • Gupta, G. C., & Harrison, F. L. (1982). Effect of humic acid on copper adsorption by Kaolin. Water, Air, and Soil Pollution, 17, 357–360.

    Article  CAS  Google Scholar 

  • Harper, M. P., Davison, W., & Tych, W. (1997). Temporal, spatial, and resolution constraints for in situ sampling devices using diffusional equilibration: dialysis and DET. Environment Science and Technology, 31, 3110–3119.

    Article  CAS  Google Scholar 

  • Harper, M. P., Davison, W., & Tych, W. (2000). DIFS—a modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils. Environmental Modelling and Software, 15, 55–66.

    Article  Google Scholar 

  • He, D. M., Susanto, H., & Ulbricht, M. (2009). Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Progress in Polymer Science, 34, 62–98.

    Article  CAS  Google Scholar 

  • Hesslein, R. H. (1976). An in situ sampler for close interval pore water studies. Limnology and Oceanography, 21, 912–914.

    Article  CAS  Google Scholar 

  • Huerta-Diaz, M. A., Rivera-Duarte, I., Sanudo-wilhelmy, S. A., & Flegal, A. R. (2007). Comparative distributions of size fractionated metals in pore waters sampled by in situ dialysis and whole-core sediment squeezing: implications for diffusive flux calculation. Applied Geochemistry, 22, 2509–2525.

    Article  CAS  Google Scholar 

  • Jackson, W. A., Martino, L., Hirsh, S., Wrobel, J., & Pardue, J. (2005). Application of a dialysis sampler to monitor phytoremediation processes. Environmental Monitoring and Assessment, 107, 155–171.

    Article  CAS  Google Scholar 

  • Jacobs, P. H. (2002). A new rechargeable dialysis pore water sampler for monitoring sub-aqueous in-situ sediment caps. Water Research, 36, 3121–3129.

    Article  CAS  Google Scholar 

  • Jézéquel, D., Brayner, R., Metzger, E., Viollier, E., Prévot, F., & Fiévet, F. (2007). Two-dimensional determination of dissolved iron and sulfur species in marine sediment pore-waters by thin-film based imaging. Thau lagoon (France). Estuarine. Coastal and Shelf Science, 72, 420–431.

    Article  Google Scholar 

  • Koretsky, C. M., Haas, J. R., Ndenga, N. T., & Miller, D. (2006). Seasonal variations in vertical redox stratification and potential influence on trace metal speciation in minerotrophic peat sediments. Water, Air, and Soil Pollution, 173, 373–403.

    Article  CAS  Google Scholar 

  • Mak, M. S. H., & Lo, I. M. C. (2011). Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Chemosphere, 84, 234–240.

    Article  CAS  Google Scholar 

  • Martinez, R. E., Sharma, P., & Kappler, A. (2010). Surface binding site analysis of Ca2+-homoionized clay-humic acid complexes. Journal of Colloid and Interface Science, 352, 526–534.

    Article  CAS  Google Scholar 

  • McGifford, R. W., Seen, A. J., & Haddad, P. R. (2010). Direct colorimetric detection of copper ions in sampling using diffusive gradients in thin-films. Analytica Chimica Acta, 662, 44–50.

    Article  CAS  Google Scholar 

  • Menegário, A. A., Tonello, P. S., & Durrant, S. F. (2010). Use of Saccharomyces cerevisiae immobilized in agarose gel as a binding agent for diffusive gradients in thin films. Analytica Chimica Acta, 683, 107–112.

    Article  Google Scholar 

  • Montgomery, S., Mucci, A., & Lucotte, M. (1996). The application of in situ dialysis samplers for close interval investigations of total dissolved mercury in interstitial waters. Water, Air, and Soil Pollution, 87, 219–229.

    Article  CAS  Google Scholar 

  • Nifant’eva, T. I., Burba, P., Fedorov, O., Shkinev, V. M., & Ya Spivakov, B. (2001). Ultrafiltration and determination of Zn– and Cu–humic substances complexes stability constants. Talanta, 53, 1127–1131.

    Article  Google Scholar 

  • Piepenbrock, A., Dippon, U., Porsch, K., Appel, E., & Kappler, A. (2011). Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochimica et Cosmochimica Acta, 75, 6844–6858.

    Article  CAS  Google Scholar 

  • Poulton, B. C., Allert, A. L., Besser, J. M., Schmitt, C. J., Brumbaugh, W. G., & Fairchild, J. F. (2010). A macroinvertebrate assessment of Ozark streams located in lead–zinc mining areas of the Viburnum Trend in southeastern Missouri, USA. Environmental Monitoring and Assessment, 163, 619–641.

    Article  CAS  Google Scholar 

  • Qu, J. J., Ren, G. M., Chen, B., Fan, J. H., E, Y. (2011). Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environmental Monitoring and Assessment, 182, 597–606.

  • Rausch, N., Ukonmaanaho, L., Nieminen, T. M., Krachler, M., Rouxa, G. L., & Shotyk, W. (2006). Evaluation of samplers and filter materials for the establishment of trace metal concentration profiles in peat bog porewaters using inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 558, 201–210.

    Article  CAS  Google Scholar 

  • Robertson, E. L., & Liber, K. (2009). Effect of sampling method on contaminant measurement in pore-water and surface water at two uranium operations: can method affect conclusions? Environmental Monitoring and Assessment, 155, 539–553.

    Article  CAS  Google Scholar 

  • Şahin, M., Gorçay, H., Kir, E., & Şahin, Y. (2009). Removal of calcium and magnesium using polyaniline and derivatives modified PVDF cation-exchange membranes by Donnan dialysis. Reactive and Functional Polymers, 69, 673–680.

    Article  Google Scholar 

  • Soler-Rovira, P., Madejón, E., Madejón, P., & Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: Role of humic acids in copper bioavailability. Chemosphere, 79, 844–849.

    Article  CAS  Google Scholar 

  • Stathi, P., & Deligiannakis, Y. (2010). Humic acid-inspired hybrid materials as heavy metal absorbents. Journal of Colloid and Interface Science, 351, 239–247.

    Article  CAS  Google Scholar 

  • Steinmann, P., & Shotyk, W. (1997). Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland. Geochimica et Cosmochimica Acta, 61, 1143–1163.

    Article  CAS  Google Scholar 

  • Teasdale, P. R., Batley, G. E., Apte, S. C., & Webster, L. T. (1995). Pore water sampling with sediment peepers. Trends in Analytical Chemistry, 14, 250–256.

    CAS  Google Scholar 

  • Ulbricht, M. (2006). Advanced functional polymer membranes. Polymer, 47, 2217–2262.

    Article  CAS  Google Scholar 

  • Van der Veeken, P. L. R., Chakraborty, P., & Van Leeuwen, H. P. (2010). Accumulation of humic acid in DET/DGT gels. Environment Science and Technology, 44, 4253–4257.

    Article  Google Scholar 

  • Webster, I., Teasdale, P., & Grigg, N. (1998). Theoretical and experimental analysis of peeper dynamics. Environment Science and Technology, 32, 1727–1733.

    Article  CAS  Google Scholar 

  • Xiao, K., Wang, X. M., Huang, X., Waite, T. D., & Wen, X. H. (2009). Analysis of polysaccharide, protein and humic acid retention by microfiltration membranes using Thomas’ dynamic adsorption model. Journal of Membrane Science, 342, 22–34.

    Article  CAS  Google Scholar 

  • Zhao, X. J., Cheng, J., Chen, S. J., Zhang, J., & Wang, X. L. (2010). Hydrophilic modification of poly(vinylidene fluoride) (PVDF) by in situ polymerization of methyl methacrylate (MMA) monomer. Colloid & Polymer Science, 288, 1327–1332.

    Article  CAS  Google Scholar 

  • Zheng, Y. M., Zou, S. W., Nanayakkara, K. G. N., Matsuura, T., & Chen, J. P. (2011). Adsorptive removal of arsenic from aqueous solution by a PVDF/zirconia blend flat sheet membrane. Journal of Membrane Science, 374, 1–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41071213; 21177121; 41101459) and Fujian Province Natural Science Foundation (2011J05118; 2012 J01184).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensui Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Zhang, Y. & Luo, W. Retention Effects of Soil Humic Substances on the Diffusive Transportation of Metal Ions During Sediment Porewater Membrane Dialysis Sampling. Water Air Soil Pollut 224, 1577 (2013). https://doi.org/10.1007/s11270-013-1577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1577-2

Keywords

Navigation