Skip to main content

Advertisement

Log in

Synthesis and Characterization of Alumina Impregnated Alginate Beads for Fluoride Removal from Potable Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present study was conducted to study the feasibility of alumina impregnated calcium alginate beads to sorb the excess fluoride ions from the potable water. Numerous defluoridation techniques have been explored to remove excess fluoride ions from potable water, no single method has been found to be both effective and inexpensive enough to implement widely. During this work defluoridation was done using alumina impregnated calcium alginate beads without disturbing the drinking water qualities. The optimal condition for synthesis of calcium alginate alumina (Cal-Alg-Alu) beads is 2 % (wt/vol) having 22 % (wt/vol) alumina loading, stirring time: 1 h, drying temperature: 60 °C for 8 h. The nature and morphology of pure and fluoride-sorbed calcium alginate alumina beads were characterized by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis. The results of batch sorption experiments suggest that Cal-Alg-Alu beads is very effective for defluoridation in the pH range of 3.5–9.0 and sorption is more than 99.9 % in the concentration range of 1–100 mg l−1. Equilibrium sorption follows Langmuir isotherms well and the maximum fluoride uptake calculated is 17.0 mg g−1. The sorption kinetics can be explained by pseudo-second-order model well and the time needed for equilibrium is 300 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amor, Z., Bariou, B., Mameri, N., Taky, M., Nicolas, S., & Elmidaoui, A. (2001). Fluoride removal from brackish water by electro dialysis. Desalination, 133, 215–223.

    Article  CAS  Google Scholar 

  • Bansiwal, A., Pillewan, P., Biniwale, R. B., & Rayalu, S. S. (2010). Copper oxide incorporated mesoporous alumina for defluoridation of drinking water. Microporous and Mesoporous Materials, 129, 54–61.

    Article  CAS  Google Scholar 

  • Bhargava, D. S., & Killedar, D. J. (1992). Fluoride adsorption on fishbone charcoal through a moving media absorber. Water Research, 26, 781–788.

    Article  CAS  Google Scholar 

  • Binbin, W., Baoshan, Z., Hongying, W., Yakun, P., & Yuehua, T. (2005). Dental caries in fluorine exposure areas in China. Environmental Geochemistry and Health, 27, 285–288.

    Article  Google Scholar 

  • Chen, L., Wu, H. X., Wang, T. J., Jin, Y., Zhang, Y., & Dou, X. M. (2009). Granulation ofFe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed. Powder Technology, 193, 59–64.

    Article  CAS  Google Scholar 

  • Chen, N., Zhang, Z., Feng, C., Sugiura, N., Li, M., & Chen, R. (2010). Fluoride removal from water by granular ceramic adsorption. Journal of Colloid and Interface Science, 348, 579–584.

    Article  CAS  Google Scholar 

  • Daifullah, A. A. M., Yakout, S. M., & Elreefy, S. A. (2007). Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of Hazardous Materials, 147, 633–643.

    Article  CAS  Google Scholar 

  • Ghorai, S., & Pant, K. K. (2004). Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed. Chemical Engineering Journal, 98, 165–173.

    Article  CAS  Google Scholar 

  • Harrison, P. T. C. (2005). Fluoride in water: a UK perspective. Journal of Fluorine Chemistry, 126, 1448–1456.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second-order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Hu, C. Y., Lo, S. L., & Kuan, W. H. (2005). Effects of the molar ratio of hydroxide and fluoride to Al(III) on fluoride removal by coagulation and electro coagulation. Journal of Colloid and Interface Science, 283, 472–476.

    Article  CAS  Google Scholar 

  • Kumar, A., Bhatnagar, M., Jung Ji, W., Lee, S., Kim, S. J., Lee, G., Song, H., Choi, J. Y., Yang, J., & Jeon, B. H. (2009). Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Research, 43, 490–498.

    Article  CAS  Google Scholar 

  • Kumar, E., Bhatnagar, A., Kumar, U., & Mika, S. (2011). Defluoridation from aqueous solutions by nano-alumina: characterization and sorption studies. Journal of Hazardous Materials, 186, 1042–1049.

    Article  CAS  Google Scholar 

  • Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.

    Google Scholar 

  • Ma, W., Ya, F.-Q., Han, M., & Wang, R. (2007). Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. Journal of Hazardous Materials, 143, 296–302.

    Article  CAS  Google Scholar 

  • Mahramanlioglu, M., Kizilcikli, I., & Bicer, I. O. (2002). Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. Journal of Fluorine Chemistry, 115, 41–47.

    Article  CAS  Google Scholar 

  • Maiti, A., Basu, J. K., & De, S. (2011). Chemical treated laterite as promising fluoride adsorbent for aqueous system and kinetic modeling. Desalination, 265, 28–36.

    Article  CAS  Google Scholar 

  • Meenakshi, M., & Maheshwari, R. C. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Materials B, 137, 456–463.

    Article  CAS  Google Scholar 

  • Moges, G., Zewge, F., & Socher, M. (1996). Preliminary investigations on the defluoridation of water using fired clay chips. Journal of African Earth Sciences, 21, 479–482.

    Article  Google Scholar 

  • Ndiaye, P. I., Moulin, P., Dominguez, L., Millet, J. C., & Charbit, F. (2005). Removal of fluoride from electronic industrial effluent by RO membrane separation. Desalination, 173, 25–32.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Ground water chemistry and water–rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53, 1727–1740.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., & Jenne, E. A. (1977). Fluorite solubility equilibria in selected geothermal waters. Geochimica et Cosmochimica Acta, 41, 175–188.

    Article  CAS  Google Scholar 

  • Onyango, M. S., Kojima, Y., Kumar, A., Kuchar, D., Kubota, M., & Matsuda, H. (2006). Uptake of fluoride by Al3+-pretreated low-silica synthetic zeolites: adsorption equilibrium and rate studies. Separation Science and Technology, 41, 683–704.

    Article  CAS  Google Scholar 

  • Rankama, K., & Edgington, G. (1946). Fluorine in soils. Soil Science, 61, 341–353.

    Article  Google Scholar 

  • Rao, N. V. R., Rao, N., Rao, K. S. P., & Schuiling, R. D. (1993). Fluorine distribution in waters of Nalgonda District, Andhra Pradesh, India. Environmental Geology, 21, 84–89.

    Article  CAS  Google Scholar 

  • Reardon, E. J., & Wang, Y. (2000). A limestone reactor for fluoride removal from wastewaters. Environmental Science and Technology, 34, 3247–3253.

    Article  CAS  Google Scholar 

  • Saha, S. (1993). Treatment of aqueous effluent for fluoride removal. Water Research, 27, 1347–1350.

    Article  CAS  Google Scholar 

  • Saxena, V. K., & Ahmed, S. (2001). Dissolution of fluoride in groundwater: a water–rock interaction study. Environmental Geology, 49(9), 1084–1087.

    Google Scholar 

  • Singhal, R. K., Basu, H., Manish, V., Reddy, A. V. R., & Mukherjee, T. (2011). Removal of low level of Am-241 from potable water originated from different geochemical environments by calcium alginate. Desalination, 280, 313–318.

    Article  CAS  Google Scholar 

  • Singhal, R. K., Joshi, S. R. K., Shobha, T. K., & Gurg, R. P. (2004). Reduction of uranium concentration in well water by Chlorella (Chlorella pyrendoidosa) a fresh water algae immobilised in calcium alginate. Journal of Radioanalytical and Nuclear Chemistry, 261(1), 73–78.

    Google Scholar 

  • Tchomgui-Kamga, E., Alonzo, V., Nanseu-Njiki, C. P., Audebrand, N., Ngameni, E., & Darchen, A. (2010). Preparation and characterization of charcoals that contain dispersed aluminum oxide as adsorbents for removal of fluoride from drinking water. Carbon, 48, 333–343.

    Article  CAS  Google Scholar 

  • Teng, S.-X., Wang, S.-G., Gong, W.-X., Liu, X.-W., & Gao, B.-Y. (2009). Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism. Journal of Hazardous Materials, 168, 1004–1011.

    Article  CAS  Google Scholar 

  • Thakre, D., Jagtap, S., Bansiwal, A., Labhsetwar, N., & Rayalu, S. (2010). Synthesis of La-incorporated chitosan beads for fluoride removal from water. Journal of Fluorine Chemistry, 131, 373–377.

    Article  CAS  Google Scholar 

  • Tsuchida, T. (1993). Preparation and reactivity of acicular αAl2O3 from synthetic diaspore βAl2O3·H2O. Solid State Ionics, 63, 464–470.

    Article  Google Scholar 

  • Vaaramaa, K., & Lehto, J. (2003). Removal of metals and anions from drinking water by ion exchange. Desalination, 155, 157–170.

    Article  CAS  Google Scholar 

  • Viswanathana, N., & Meenakshi, S. (2010). Selective fluoride adsorption by a hydrotalcite/chitosan composite. Applied Clay Science, 48, 607–611.

    Article  Google Scholar 

  • Wang, Y., & Reardon, E. J. (2001). Activation and regeneration of a soil sorbent for defluoridation of drinking water. Applied Geochemistry, 16, 531–539.

    Article  CAS  Google Scholar 

  • World Health Organization (2006). Guidelines for drinking-water quality [Electronic Resource]: Incorporating first addendum (vol. I). Recommendations (pp. 375–377). Geneva, Switzerland: WHO Press.

  • Wu, X., Zhang, Y., Dou, X., & Yang, M. (2007). Fluoride removal performance of a novel Fe–Al–Ce trimetal oxide adsorbent. Chemosphere, 69, 1758–1764.

    Article  CAS  Google Scholar 

  • Yang, M., Hashimoto, T., Hoshi, N., & Myoga, H. (1999). Fluoride removal in a fixed bed packed with granular calcite. Water Research, 33, 3395–3402.

    Article  CAS  Google Scholar 

  • Zhang, W., Sun, M., & Prins, R. (2002). Multinuclear MAS NMR identification of fluorine species on the surface of fluorinated –alumina. The Journal of Physical Chemistry. B, 106, 11805–11809.

    Article  CAS  Google Scholar 

  • Zhao, X., Wang, J., Wu, F., Wang, T., Cai, Y., Shi, Y., & Jiang, G. (2010). Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nano particles. Journal of Hazardous Materials, 173, 102–109.

    Article  CAS  Google Scholar 

  • Zhareslu, M., Crisan, P. M., Fruth, V., & Preda, S. (2003). Al2TiO5-based ceramics obtained by hydrothermal process. Journal of Optoelectronics and Advanced Materials, 5, 1411–1416.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the encouragement and guidance provided by Prof. T. Mukherjee, director of chemistry group. The authors also thank Shri Ajay Kumar and Shri Sabyasachi Rout of Health Physics Division for analysing the samples by ion chromatography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Singhal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, H., Singhal, R.K., Pimple, M.V. et al. Synthesis and Characterization of Alumina Impregnated Alginate Beads for Fluoride Removal from Potable Water. Water Air Soil Pollut 224, 1572 (2013). https://doi.org/10.1007/s11270-013-1572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1572-7

Keywords

Navigation