Skip to main content
Log in

Studies on the Persistence of a Commercial Formulation of Chlorpyrifos on an Agricultural Soil from Provincia de Buenos Aires, República Argentina

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Chlorpyrifos (O, O-diethyl-O-(3,5,6-trichloro-2-pyridyl) phosphorothioate) is a broad-spectrum organophosphate insecticide and acaricide, widely used in our country. Nowadays, it is the principal insecticide in the market employed for agricultural purposes. A number of studies tending to study the affinity of different pesticides with soil have been performed, but only a few refer to chlorpyrifos. Because of its intensive use, a wide range of terrestrial ecosystems may be contaminated with chlorpyrifos, and there is a need to evaluate its environmental behavior and effects. The aim of our work is to study the interaction and persistence of a commercial formulation of chlorpyrifos on an agricultural soil from Provincia de Buenos Aires, Argentina. In this case, recovery percentages increased with the increase of initial concentration of the pesticide until a concentration of about 25 ppm is reached, and then a decrease was observed. The half-time life was not affected by an increase in chlorpyrifos concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Awasthi, M. D., & Prakash, N. B. (1997). Persistence of chlorpyrifos in soils under different moisture regimes. Pesticide Science, 50, 1–4.

    Article  CAS  Google Scholar 

  • Bin, L., Chengli, Y., Mingbo, G., Yanfu, Z., Jun, Z., Changxiong, Z., et al. (2011). Adsorption and degradation of triazophos, chlorpyrifos, and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China. Journal of Environmental Management, 92(9), 2229–2234.

    Article  Google Scholar 

  • CASAFE (Cámara de Sanidad Agropecuaria y Fertilizantes, Buenos Aires, Argentina) (2012). Available from: <http://www.casafe.org>. Accessed October 2012.

  • Cavazza, L., Patruno, A., & Cirillo, E. (2007). Field capacity in soils with a yearly oscillating water table. Biosystems Engineering, 98(3), 364–370.

    Article  Google Scholar 

  • Chu, X., Fang, H., Pan, X., Wang, X., Shan, M., Feng, B., et al. (2008). Degradation of chlorpyrifos alone and in combination with chlorothalonil and their effects on soil microbial populations. Journal of Environmental Sciences, 20, 464–469.

    Article  CAS  Google Scholar 

  • European Union (2005). Amending Council Directive 91/414/EEC to include chlorpyrifos, chlorpyrifos –methyl, mancozeb, maneb, and metiram as active substances. Official J. Eur. Union, Comission Directive 2005/72/EC., p. 63.

  • Fang, H., Yu, Y. L., Wang, X., Shan, M., Wu, X. M., & Yu, J. Q. (2006). Dissipation of chlorpyrifos in pakchoi-vegetated soil in a greenhouse. Journal of Environmental Sciences, 18(4), 760–764.

    CAS  Google Scholar 

  • Fang, H., Yu, Y., Chu, X., Wang, X., Yang, X., & Yu, J. (2009). Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. Journal of Environmental Sciences, 21, 380–386.

    Article  CAS  Google Scholar 

  • Fogg, P., Boxall, A. B. A., & Walker, A. (2003). Degradation of pesticides in biobeds: the effect of concentration and pesticides mixtures. Journal of Agricultural and Food Chemistry, 51, 5344–5349.

    Article  CAS  Google Scholar 

  • Gan, J., Becker, R. L., Koskinen, W. C., & Buhler, D. D. (1996). Degradation of atrazine in two soils as a function of concentration. Journal of Environmental Quality, 25, 1064–1072.

    Article  CAS  Google Scholar 

  • Gebremariam, S., & Beutel, M. (2010). Effects of drain-fill cycling on chlorpyrifos mineralization in wetland sediment–water microcosms. Chemosphere, 78, 1337–1341.

    Article  CAS  Google Scholar 

  • Getzin, L. W. (1981). Degradation of chlorpyrifos in soil: influence of autoclaving, soil moisture, and temperature. Journal of Economic Entomology, 74, 158–162.

    CAS  Google Scholar 

  • Howard, P. H. (Ed.). (1991). Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Pesticides, vol. 3 (pp. 5–13). Chelsea, MI: Lewis Publishers.

    Google Scholar 

  • Jergentz, S., Pessacq, P., Mugni, H., Bonetto, C., & Schulz, R. (2004). Linking in situ bioassays and population dynamics of macroinvertebrates to assess agricultural contamination in streams of the Argentine pampa. Ecotoxicology and Environmental Safety, 59, 133–141.

    Article  CAS  Google Scholar 

  • Jergentz, S., Mugni, H., Bonetto, C., & Schulz, R. (2005). Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere, 61, 817–826.

    Article  CAS  Google Scholar 

  • Marino, D., & Ronco, A. (2005). Cypermethrin and chlorpiryfos concentration levels in surface water bodies of the Pampa Ondulada. Argentina Bulletin Environment Contamination Toxicology, 75(4), 820–826.

    Article  CAS  Google Scholar 

  • Moses, M., Johnston, E. S., Anger, W. K., Burse, V. W., Horstman, S. W., Kackson, R. J., et al. (1993). Environmental equity and pesticide exposure. Toxicology and Industrial Health, 9, 913–959.

    CAS  Google Scholar 

  • Mizuno, I., Arrigo, N., & Svartz, H. (1978). Método rápido para determinar Humedad Equivalente. Buenos Aires: Actas de Reunión Argentina de la Ciencia del Suelo. Septiembre 1978.

    Google Scholar 

  • Oliver, G. R., Bolles, H. G., & Shurdut, B. A. (2000). Chlorpyrifos: probabilistic assessment of exposure and risk. Neurotoxicology, 21, 203–208.

    CAS  Google Scholar 

  • Pandey, S., & Singh, D. K. (2004). Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere, 55(2), 197–205.

    Article  CAS  Google Scholar 

  • Racke, K. D., Coats, J. R., & Titus, K. R. (1988). Degradation of chlorpyrifos and its hydrolysis product, 3,5,6-trichloro-2-pyridinol, in soil. Journal of Environmental Science and Health, B23, 527–539.

    CAS  Google Scholar 

  • Racke, K. D., Laskowski, D. A., & Schultz, M. R. (1990). Resistance of chlorpyrifos to enhanced biodegradation in soil. Journal of Agricultural and Food Chemistry, 38, 1430–1436.

    Article  CAS  Google Scholar 

  • Racke, K. D. (1993). Environmental fate of chlorpyrifos. Reviews of Environmental Contamination and Toxicology, 131, 1–154.

    Article  CAS  Google Scholar 

  • Racke, K. D., Steele, K. P., Yoder, R. N., Dick, W. A., & Avidov, E. (1996). Factors affecting the hydrolytic degradation of chlorpyrifos in soil. Journal of Agricultural and Food Chemistry, 44, 1582–1592.

    Article  CAS  Google Scholar 

  • Serrano, R., Lopez, F. J., Hernandez, F., & Pena, J. B. (1997). Bioconcentration of chlorpyrifos, chlorfenvinphos, and methidathion in Mytilus galloprovincialis. Bulletin of Environmental Contamination and Toxicology, 59, 968–975.

    Article  CAS  Google Scholar 

  • Shan, M., Fang, H., Wang, X., Feng, B., Chu, X., & Yu, Y. (2006). Effect of chlorpyrifos on soil microbial populations and enzyme activities. Journal of Environmental Sciences, 18, 4–5.

    CAS  Google Scholar 

  • Singh, B. K., Walker, A., & Wright, D. J. (2002). Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. Bulletin of Environmental Contamination and Toxicology, 69(2), 181–188.

    Article  Google Scholar 

  • Singh, B. K., Walker, A., Morgan, J. A., & Wright, D. J. (2003). Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Applied and Environmental Microbiology, 69(9), 5198–5206.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (1996). Methods of Soil Analysis: Part 3 – Chemical Methods. SSSAV Book Series: 5. Madison: ASA.

    Google Scholar 

  • USDA (U.S. Department of Agriculture) (1993) Soil Survey Division Staff. Soil Conservation Service. Handbook 18.

  • USEPA (1999). Quantitative usage analysis, chlorpyrifos, US Environmental Protection Agency, 24 November 1999.

  • USEPA (2011a) Chlorpyrifos Preliminary Human Health Assessment for Registration Review Document ID: EPA-HQ-OPP-2008-0850-0025. June 2011.

  • USEPA (2011b) Revised Chlorpyrifos Preliminary Reg Review Drinking Water Assessment Document ID: EPA-HQ-OPP-2008-0850-0026. June 2011.

  • Vischetti, C., Coppola, L., Monaci, E., Cardinali, A., & Castillo, M. D. (2007). Microbial impact of the pesticide chlorpyrifos on Swedish and Italian biobeds. Agronomy for Sustainable Development, 27(3), 267–272.

    Article  CAS  Google Scholar 

  • Wang, L. G., Jiang, X., Mao, Y. M., Zhao, Z. H., & Bian, Y. R. (2005). Organophosphorus pesticide extraction and cleanup from soils and measurement using GC-NPD. Pedosphere, 15, 386–394.

    CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and Universidad de Buenos Aires for financial support. We thank the Department of Soils of the Faculty of Agronomics, University of Buenos Aires for the chemical characterization of solid matrices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecile du Mortier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, M., du Mortier, C., Sokolic, T. et al. Studies on the Persistence of a Commercial Formulation of Chlorpyrifos on an Agricultural Soil from Provincia de Buenos Aires, República Argentina. Water Air Soil Pollut 224, 1571 (2013). https://doi.org/10.1007/s11270-013-1571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1571-8

Keywords

Navigation