Skip to main content

Advertisement

Log in

Challenges to Developing Methane Biofiltration for Coal Mine Ventilation Air: A Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Coal mine methane is a significant greenhouse gas source as well as a potential lost energy resource if not effectively used. In recent years, mine ventilation air (MVA) capture and use has become a key element of research and development due to comparatively larger methane emissions by MVA than other coal mine sources. Technologies have been evaluated to treat the low methane concentrations in MVA such as thermal-based technologies or processing by biofiltration. This review initially considers the techniques available for treating the low methane concentrations encountered in MVA, after which it focuses on developments in biofiltration systems. Biofiltration represents a simple, energy-efficient, and cheap alternative to oxidize methane from MVA. Major factors influencing biofilter performance along with knowledge gaps in relation to its application to MVA are identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  • Apel, W. A., Dugan, P. R., & Wiebe, M. R. (1991). Use of methanotrophic bacteria in gas phase bioreactors to abate methane in coal mine atmospheres. Fuel, 70(8), 1001–1003.

    Article  CAS  Google Scholar 

  • Arriaga, S., Muñoz, R., Hernández, S., Guieysse, B., & Revah, S. (2006). Gaseous hexane biodegradation by Fusarium solani in two liquid phase packed-bed and stirred-tank bioreactors. Environmental Science & Technology, 40(7), 2390–2395.

    Article  CAS  Google Scholar 

  • Australian Government Bureau of Meteorology (2011). Climate statistics for Australia locations. http://www.bom.gov.au/climate/averages/tables/cw_068053.shtml. Accessed 19 August 2011.

  • Bailón, L., Nikolausz, M., Kästner, M., Veiga, M. C., & Kennes, C. (2009). Removal of dichloromethane from waste gases in one-and two-liquid-phase stirred tank bioreactors and biotrickling filters. Water Research, 43(1), 11–20.

    Article  Google Scholar 

  • Bender, M., & Conrad, R. (1995). Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology and Biochemistry, 27(12), 1517–1527.

    Article  CAS  Google Scholar 

  • Boeckx, P., & Cleemput, O. V. (1996). Methane oxidation in a neutral landfill cover soil: Influence of moisture content, temperature, nitrogen-turnover. Journal of Environmental Quality, 25(1), 178–183. doi:10.2134/jeq1996.00472425002500010023x.

    Article  CAS  Google Scholar 

  • Borjesson, G., Sundh, I., Tunlid, A., Frostegard, A., & Svensson, B. H. (1998). Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiology Ecology, 26(3), 207–217.

    Article  CAS  Google Scholar 

  • Carothers, F. P., & Deo, M. (2000). Technical and economic assessment: Mitigation of methane emissions from coal mine ventilation air. Washington, DC: US EPA.

    Google Scholar 

  • Carothers, F. P., Schultz, H. L., & Talkington, C. C. (2000). Mitigation of methane emissions from coal mine ventilation air: An update. Washington, DC: US EPA.

    Google Scholar 

  • Chakravorty, R. N., & Forrester, P. I. Application of biotechnology for methane control in coal mines. In Second US Mine Ventilation Symposium, Reno, Nevada, USA, 2325 September 1985 (pp. 699–706).

  • Chiemchaisri, W., Visvanathan, C., & Wu, J. S. (2001). Biological activities of methane oxidation in tropical landfill cover soils. J. Solid Waste Technol. Management, 27(3), 129–136.

    CAS  Google Scholar 

  • Christophersen, M., Linderod, L., Jensen, P. E., & Kjeldsen, P. (2000). Methane oxidation at low temperatures in soil exposed to landfill gas. Journal of Environmental Quality, 29(6), 1989.

    Article  CAS  Google Scholar 

  • Cimino, S., Pirone, R., & Russo, G. (2001). Thermal stability of perovskite-based monolithic reactors in the catalytic combustion of methane. Industrial and Engineering Chemistry Research, 40(1), 80–85.

    Article  CAS  Google Scholar 

  • Cloirec, P. L., Humer, P., & Ramirez-Lopez, E. M. (2001). Biotreatment of odours: Control and performances of a biofilter and a bioscrubber. Water Science and Technology, 44, 219–226.

    Google Scholar 

  • Cork, D., & Peet, R. (2011). Preliminary safety analysis for the connection of a thermal oxidiser to a working coal mine. Mayfield, Australia: Corky’s Sustainable Energy.

    Google Scholar 

  • Cox, L., & Russell, D. (2003). Using bioreactors to control air pollution (vol. EPA-456/R-03-003). Washingon, DC: US EPA.

    Google Scholar 

  • Dammann, B., Streese, J., & Stegmann, R. (1999). Microbial oxidation of methane from landfills in biofilters. In Proceedings Sardinia 99, 7th International Waste Management and Landfill Symposium, S.Margherita di Pula, Cagliari, Italy, 49 October (vol. 99, pp. 517–524). Silver Spring: Solid Waste Association of North America.

  • du Plessis, C. A., Strauss, J. M., Sebapalo, E. M. T., & Riedel, K.-H. J. (2003). Empirical model for methane oxidation using a composted pine bark biofilter. Fuel, 82(11), 1359–1365.

    Article  Google Scholar 

  • EPA. (2003). Assessment of the worldwide market potential fro oxidising coal mine ventilation air methane. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • EPA. (2010). Coal mine methane country profile. Washington, DC: United States Environmental Protection Agency.

    Google Scholar 

  • Gebert, J., & Groengroeft, A. (2006). Passive landfill gas emission—Influence of atmospheric pressure and implications for the operation of methane-oxidising biofilters. Waste Management, 26(3), 245–251.

    Article  CAS  Google Scholar 

  • Girard, M., Ramirez, A. A., Buelna, G., & Heitz, M. (2011). Biofiltration of methane at low concentrations representative of the piggery industry—Influence of the methane and nitrogen concentrations. Chemical Engineering Journal, 168, 151–158.

    Article  CAS  Google Scholar 

  • Groenestijn, J. W. V., & Kraakman, N. J. R. (2005). Recent developments in biological waste gas purification in Europe. Chemical Engineering Journal, 113, 85–91.

    Article  Google Scholar 

  • Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60(2), 439–471.

    CAS  Google Scholar 

  • Hekmat, D., & Vortmeyer, D. (2000). Biodegradation of poorly water soluble volatile aromatic compounds from waste air. Chemical Engineering and Technology, 23(4), 315–318.

    Article  CAS  Google Scholar 

  • Hettiaratchi, J., & Stein, V. (2001). Methanobiofilters (MBFs) and landfill cover systems for CH4 emission mitigation. In Proceedings of the Seventeenth International Conference on Solid Waste Technology and Management, Philadelphia, PA (pp. 465–476).

  • Hettiaratchi, J., Stein, V., & Achari, G. (2000) Biofiltration: A cost-effective technique for controlling methane emissions. In Proceedings of the Sixth International Conference on Environmental Issues and Management of Waste in Energy and Mineral Production, Calgary, Alberta, Canada.

  • Higgins, I. J., Best, D. J., Hammond, R. C., & Scott, D. (1981). Methane-oxidizing microorganisms. Microbiological Reviews, 45(4), 556.

    CAS  Google Scholar 

  • Humer, M., & Lechner, P. F. P. (1999). Alternative approach to the elimination of greenhouse gases from old landfills. Waste Management Res., 17(6), 443–452.

    CAS  Google Scholar 

  • Hutsch, B. W. (1998). Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biology and Fertility of Soils, 28(1), 27–35. doi:10.1007/s003740050459.

    Article  CAS  Google Scholar 

  • Kennes, C., Rene, E. R., & Veiga, M. C. (2009). Bioprocesses for air pollution control. Journal of Chemical Technology and Biotechnology, 84, 1419–1436. doi:10.1002/jctb.2216.

    Article  CAS  Google Scholar 

  • Kightley, D., Nedwell, D. B., & Cooper, M. (1995). Capacity for methane oxidation in landfill cover soils measured in laboratory scale soil microcosms. Applied and Environmental Microbiology, 61(2), 592.

    CAS  Google Scholar 

  • King, G. M., & Schnell, S. (1994). Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Applied and Environmental Microbiology, 60(10), 3508–3513.

    CAS  Google Scholar 

  • Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37(1), 25–50.

    Article  Google Scholar 

  • Leak, D. J., & Dalton, H. (1986a). Growth yields of methanotrophs. Applied Microbiology and Biotechnology, 23(6), 470–476.

    Article  CAS  Google Scholar 

  • Leak, D. J., & Dalton, H. (1986b). Growth yields of methanotrophs 2. A theoretical analysis. Applied Microbiology and Biotechnology, 23(6), 477–481.

    Article  CAS  Google Scholar 

  • Lipscomb, J. D. (1994). Biochemistry of the soluble methane monooxygenase. Ann. Rev. Microbiol., 48(1), 371–399.

    Article  CAS  Google Scholar 

  • Melse, R. W., & van der Werf, A. W. (2005). Biofiltration for mitigation of methane emission from animal husbandry. Environmental Science & Technology, 39(14), 5460–5468.

    Article  CAS  Google Scholar 

  • Menard, C., Ramirez, A. A., Nikiema, J., & Heitz, M. (2011). Analysis of the effects of temperature, the amount of nutrient solution and the carbon dioxide concentration on methane biofiltration. Int. J. Sus. Dev. Plann, 6(3), 312–324.

    Article  Google Scholar 

  • Moore, S., Freund, P., Riemer, P., & Smith, A. (1998). Abatement of methane emissions. Cheltenham: IEA Greenhouse Gas R&D Programme.

  • Morton, J. D., Hayes, K. F., & Semrau, J. D. (2000). Effect of copper speciation on whole-cell soluble methane monooxygenase activity in Methylosinus trichosporium OB3b. Applied and Environmental Microbiology, 66(4), 1730–1733.

    Article  CAS  Google Scholar 

  • Myors, A. (2010). Methane capture from ventilation air. Sydney: Centennial Coal.

    Google Scholar 

  • Nikiema, J., Bibeau, L., Lavoie, J., Brzezinski, R., Vigneux, J., & Heitz, M. (2004). Biogas, a real problem: Biofiltration, a promising solution. In Proceedings of the USCCSC-TRG Conference on Biofiltration, October, Los Angeles, California, USA, 20–22 October (pp. 73–80). Tustin: The Reynolds Group.

  • Nikiema, J., Bibeau, L., Lavoie, J., Brzezinski, R., Vigneux, J., & Heitz, M. (2005). Biofiltration of methane: An experimental study. Chemical Engineering Journal, 113(2–3), 111–117.

    Article  CAS  Google Scholar 

  • Nikiema, J., Brzezinski, R., & Heitz, M. (2007). Elimination of methane generated from landfills by biofiltration: A review. Reviews in Environmental Science and Biotechnology, 6(4), 261–284.

    Article  CAS  Google Scholar 

  • Nikiema, J., Brzezinski, R., & Heitz, M. (2010). Influence of phosphorus, potassium, and copper on methane biofiltration performance. Canadian Journal of Civil Engineering, 37, 335–345. doi:10.1139/L09-145.

    Article  CAS  Google Scholar 

  • Nikiema, J., Girard, M., Brzezinski, R., & Heitz, M. (2009). Biofiltration of methane using an inorganic filter bed: Influence of inlet load and nitrogen concentration. Canadian Journal of Civil Engineering, 36(12), 1903–1910.

    Article  CAS  Google Scholar 

  • Park, S., Brown, K. W., & Thomas, J. C. (2002). The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Management Res, 20(5), 434.

    Article  CAS  Google Scholar 

  • Park, S. Y., Brown, K. W., & Thomas, J. C. (2004). The use of biofilters to reduce atmospheric methane emissions from landfills: Part I. Biofilter design. Water, Air, and Soil Pollution, 155(1), 63–85.

    Article  CAS  Google Scholar 

  • Qiao, F. (2007). Biofilter removal of methane from contaminated air. Dissertation, The State University of New Jersey, New Brunswick.

  • Ramirez, A. A., Jones, J. P., & Heitz, M. (2012). Methane treatment in biotrickling filters packed with inert materials in presence of a non-ionic surfactant. Journal of Chemical Technology and Biotechnology, 87, 848–853. doi:10.1002/jctb.3811.

    Article  Google Scholar 

  • Razumovsky, S. D., Efremenko, E. N., Makhlis, T. A., Senko, O. V., Bikhovsky, M. Y., Podmaster’ev, V. V., et al. (2008). Effect of immobilization on the main dynamic characteristics of the enzymatic oxidation of methane to methanol by bacteria Methylosinus sporium B-2121. Russian Chemical Bulletin., 57(8), 1633–1636.

    Google Scholar 

  • Sloss, L. (2005). Coalbed methane emissions: Capture and utilisation. London: IEA Clean Coal Centre.

    Google Scholar 

  • Sly, L. I., Bryant, L. J., Cox, J. M., & Anderson, J. M. (1993). Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Applied Microbiology and Biotechnology, 39(3), 400–404.

    Article  CAS  Google Scholar 

  • Smith, D. A. (2004). Methane recovery from low and variable concentrations in mine ventilation air: A review of adsorption and membrane separation (vol. C13077). Sydney: ACARP.

    Google Scholar 

  • Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., et al. (2007). Technical summary. In Climate change 2007: The physical science basis. Cambridge: Cambridge University Press.

  • Stralis-Pavese, N., Bodrossy, L., Reichenauer, T. G., Weilharter, A., & Sessitsch, A. (2006). 16S rRNA based T-RFLP analysis of methane oxidising bacteria—Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Applied Soil Ecology, 31(3), 251–266.

    Article  Google Scholar 

  • Streese, J., & Stegmann, R. (2003). Microbial oxidation of methane from old landfills in biofilters. Waste Management, 23(7), 573–580.

    Article  CAS  Google Scholar 

  • Su, S., Beath, A., Guo, H., & Mallett, C. (2005). An assessment of mine methane mitigation and utilisation technologies. Progress in Energy and Combustion Science, 31(2), 123–170.

    Article  CAS  Google Scholar 

  • Su, S., Chen, H., Teakle, P., & Xue, S. (2008). Characteristics of coal mine ventilation air flows. J. Environ. Management, 86(1), 44–62.

    Article  CAS  Google Scholar 

  • Su, S., Ren, T., Balusu, R., Beath, A., Guo, H., & Mallett, C. (2006). Development of two case studies on mine methane capture and utilisation in China. Kenmore: Commonwealth Scientific and Industrial Research Organisation Exploration and Mining.

  • Su, S., & Yu, X. (2011). Progress in developing an innovative lean burn catalytic turbine technology for fugitive methane mitigation and utilization. Front. Energy, 5(2), 229–235. doi:10.1007/s11708-011-0147-9.

    Article  Google Scholar 

  • Trotsenko, Y. A., & Khmelenina, V. N. (2002). Biology of extremophilic and extremotolerant methanotrophs. Archives of Microbiology, 177(2), 123–131.

    Article  CAS  Google Scholar 

  • Veillette, M., Ramirez, A. A., & Heitz, M. (2012). Biofiltration of air polluted with methane at concentration levels similar to swine slurry emissions: Influence of ammonium concentration. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering, 47(7), 1053–1064. doi:10.1080/10934529.2012.667327.

    CAS  Google Scholar 

  • Venugopal, S., Chandrakanthi, M., Hettiaratchi, P. (2003). Field scale application of methanotrophic biofilters (MBFs) in treating methane emissions from oil and gas industry In 3rd International Methane and Nitrous Oxide Mitigation Conference, Beijing, China, 1721 November (pp. 854–861).

  • Visvanathan, C., Pokhrel, D., Cheimchaisri, W., Hettiaratchi, J. P. A., & Wu, J. S. (1999). Methanotrophic activities in tropical landfill cover soils: Effects of temperature, moisture content and methane concentration. Waste Management Res., 17(4), 313–323.

    CAS  Google Scholar 

  • Wang, Y., Man, C., & Che, D. (2010). Catalytic combustion of ventilation air methane in a reverse flow reactor. Energy Fuels, 24(9), 4841–4848. doi:10.1021/ef100528p.

    Google Scholar 

  • Wani, A. H., Branion, R. M. R., & Lau, A. K. (1997). Biofiltration: A promising and cost-effective control technology for odors. VOCs and air toxics. J. Environ Sci. Health, 32(7), 2027–2055.

    Google Scholar 

  • Warmuzinski, K. (2008). Harnessing methane emissions from coal mining. Process Safety and Environmental Protection, 86(5), 315–320.

    Article  CAS  Google Scholar 

  • Whalen, S. C., Reeburgh, W. S., & Sandbeck, K. A. (1990). Rapid methane oxidation in a landfill cover soil. Applied and Environmental Microbiology, 56(11), 3405.

    CAS  Google Scholar 

  • Wilshusen, J. H., Hettiaratchi, J. P. A., & Stein, V. B. (2004). Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Management, 24(7), 643–653.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Australian Coal Association Research Program (Project C16048). The authors would like to thank Dr. Andrew Smith for his support during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limbri, H., Gunawan, C., Rosche, B. et al. Challenges to Developing Methane Biofiltration for Coal Mine Ventilation Air: A Review. Water Air Soil Pollut 224, 1566 (2013). https://doi.org/10.1007/s11270-013-1566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1566-5

Keywords

Navigation