Skip to main content
Log in

Transport and Assimilation of Ferricyanide by Three Willow Species

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Uptake, bioaccumulation, and assimilation of ferricyanide by three different species of willows was investigated. Intact prerooted weeping willows (Salix babylonica L.), Hankow willows (Salix matsudana Koidz), and hybrid willows (S. matsudana Koidz × alba L.) were grown hydroponically and treated with ferricyanide at 25.0 ± 0.5 °C for 144 h. Willows without leaves were also investigated as a treatment to quantify effect of transpiration on transport and assimilation of ferricyanide. Dissociation of ferricyanide to free cyanide in solution in absence of light was negligible. Phytotransport of ferricyanide was apparent. The phytoremoval rate of ferricyanide obtained varied with willow species (p < 0.05). Remarkable decreases in the removal rate were detected with the trees without leaves compared with the intact trees (p < 0.01). Due to small amounts of the applied ferricyanide recovered in plant materials, ferricyanide removed from the hydroponic solution was largely assimilated by plants. Transpiration stream concentration factor (TSCF) was also estimated using the content of iron (Fe). These information suggests that phytodegradation is a major process involved in botanical assimilation of ferricyanide through an undefined degradation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bushey, J. T., Ebbs, S. D., & Dzombak, D. (2006). Development of a plant uptake model for cyanide. International Journal of Phytoremediation, 8, 25–43.

    Article  CAS  Google Scholar 

  • Castric, P. A., Farnden, K. J. F., & Conn, E. E. (1972). Cyanide metabolism in higher plants. V. The formation of asparagine from β-cyanoalanine. Archives of Biochemistry and Biophysics, 152, 62–69.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Bushey, J., Poston, S., Kosma, D., Samiotakis, M., & Dzombak, D. (2003). Transport and metabolism of free cyanide and iron cyanide complexes by willow. Plant, Cell & Environment, 26, 1467–1478.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Piccinin, R. C., Goodger, J. Q. D., Kolev, S. D., Woodrow, I. W., & Baker, A. J. M. (2008). Transport of ferrocyanide by two eucalypt species and sorghum. International Journal of Phytoremediation, 10, 343–357.

    Article  CAS  Google Scholar 

  • Federico, R., & Giartosio, C. E. (1983). A transplasma membrane electron transport system in maize. Plant Physiology, 73, 182–184.

    Article  CAS  Google Scholar 

  • Ghosh, R. S., Dzombak, D. A., Luthy, R. G., & Nakles, D. V. (1999). Subsurface fate and transport of cyanide species at a manufactured-gas plant site. Water Environment Research, 71, 1205–1216.

    Article  CAS  Google Scholar 

  • Ghosh, R. S., Nakles, D. V., Murarka, P., & Neuhauser, E. F. (2004). Cyanide speciation in soil and groundwater at manufactured gas plant (MGP) sites. Environmental Engineering Science, 21, 752–767.

    Article  CAS  Google Scholar 

  • Gibbs, M. M. (1979). A simple method for the rapid determination of iron in natural waters. Water Research, 13, 295–297.

    Google Scholar 

  • Greenberg, A. E., Clesceri, L. S. E., & Eaton, A. D. (1992). Standard methods for the examination of water and wastewater (18rd ed., pp. 366–368). Washington: American Water Works Association, Water Pollution Control Federation.

  • Kang, D. H., Hong, L. Y., Schwab, A. P., & Banks, M. K. (2007). Removal of Prussian blue from contaminated soil in the rhizosphere of cyanogenic plants. Chemosphere, 69, 1492–1498.

    Article  CAS  Google Scholar 

  • Larsen, M., & Trapp, S. (2006). Uptake of iron cyanide complexes into willow trees. Environmental Science and Technology, 40, 1956–1961.

    Article  CAS  Google Scholar 

  • Larsen, M., Ucisik, A., & Trapp, S. (2005). Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environmental Science and Technology, 39, 2135–2142.

    Article  CAS  Google Scholar 

  • Mansfeldt, T., Leyer, H., Barmettler, K., & Kretzschmar, R. (2004). Cyanide leaching from soil developed from coking plant purifier waste as influenced by citrate. Vadose Zone Journal, 3, 471–479.

    CAS  Google Scholar 

  • Maruyama, A., Saito, K., & Ishizawam, K. (2001). β-cyanoalanine synthase and cysteine synthase from potato: molecular cloning, biochemical characterization, and spatial and hormonal regulation. Plant Molecular Biology, 46, 749–760.

    Article  CAS  Google Scholar 

  • Meers, E., Hopgood, M., Lesge, E., Vervake, P., Tack, F. M. G., & Verloo, M. G. (2004). Enhanced phytoextraction: in search of EDTA alternatives. International Journal of Phytoremediation, 6, 95–109.

    Article  CAS  Google Scholar 

  • Meeussen, J. C. L., Keizer, M. G., & de Haan, F. A. M. (1992). Chemical stability and decomposition rate of iron cyanide complexes in soil solutions. Environmental Science and Technology, 26, 511–516.

    Article  CAS  Google Scholar 

  • Meeussen, J. C. L., van Riemsdijk, W. H., & van der Zee, S. E. A. T. M. (1995). Transport of complexed cyanide in soil. Geoderma, 67, 73–85.

    Article  CAS  Google Scholar 

  • Rader, W. S., Solujic, L., Milosavljevic, E. B., Hendrix, J. L., & Nelson, J. H. (1993). Sunlight-induced photochemistry of aqueous solutions for hexacyanoferrate(II) and (III) ions. Environmental Science and Technology, 27, 1875–1879.

    Article  CAS  Google Scholar 

  • Rennert, T., & Mansfeldt, T. (2002). Sorption of iron-cyanide complexes on goethite in the presence of sulfate and desorption with phosphate and chloride. Journal of Environmental Quality, 31, 745–751.

    Article  CAS  Google Scholar 

  • Sachs, L. (1992). Angewandte Statistik. Berlin: Springer.

    Book  Google Scholar 

  • Samiotakis, M., & Ebbs, S. D. (2004). Possible evidence for transport of an iron cyanide complex by plants. Environmental Pollution, 127, 169–173.

    Article  CAS  Google Scholar 

  • Smith, A., & Mudder, T. (1991). The chemistry and treatment of cyanide waste. London: Mining Journal Book Ltd.

    Google Scholar 

  • State Environmental Protection Administration of China (SEPA). (1989). Analysis method for water and wastewater (3rd ed., pp. 145–154). Beijing: Environmental Science. In Chinese.

    Google Scholar 

  • Theis, T. L., & West, M. L. (1986). Effects of cyanide complexation on the adsorption of trace metals at the surface of goethite. Environmental Technology and Letter, 7, 309–316.

    Article  CAS  Google Scholar 

  • Trapp, S., & Christiansen, H. (2003). Phytoremediation of cyanide-polluted soils. In S. C. McCutcheon & J. L. Schnoor (Eds.), Phytoremediation: transformation and control of contaminants (pp. 829–862). Hoboken: Wiley.

    Google Scholar 

  • Trapp, S., Zambrano, K. C., Kusk, K. O., & Karlson, U. (2000). A phytotoxicity test using transpiration of willows. Archives of Environmental Contamination and Toxicology, 39, 154–160.

    Article  CAS  Google Scholar 

  • Wang, C., Zhang, S. H., Wang, P. F., Hou, J., Zhang, W. J., Li, W., et al. (2009). The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 75, 1469–1476.

    Google Scholar 

  • White, D. M., Pilon, T. A., & Woolard, C. (2000). Biological treatment of cyanide containing wastewater. Water Research, 34, 2105–2109.

    Article  CAS  Google Scholar 

  • Yngard, R., Damrongsiri, S., Osathaphan, K., & Sharma, V. K. (2007). Ferrate (VI) oxidation of zinc–cyanide complex. Chemosphere, 69, 729–735.

    Article  CAS  Google Scholar 

  • Yu, X. Z., & Gu, J. D. (2006). Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows. Journal of Hazardous Materials, B137, 1417–1423.

    Google Scholar 

  • Yu, X. Z., & Gu, J. D. (2009). Uptake, accumulation and metabolic responses of ferricyanide in weeping willows. Journal of Environmental Monitoring, 11, 145–152.

    Article  CAS  Google Scholar 

  • Yu, X. Z., & Gu, J. D. (2010). Effect of temperature on removal of iron cyanides from solution by maize plants. Environmental Science and Pollution Research, 17, 106–114.

    Google Scholar 

  • Yu, X. Z., Trapp, S., Zhou, P. H., Wang, C., & Zhou, X. S. (2004). Metabolism of cyanide by Chinese vegetation. Chemosphere, 56, 121–126.

    Article  CAS  Google Scholar 

  • Yu, X. Z., Trapp, S., & Zhou, P. H. (2005a). Phytotoxicity of cyanide to weeping willow trees. Environmental Science and Pollution Research, 12, 109–113.

    Article  CAS  Google Scholar 

  • Yu, X. Z., Trapp, S., Zhou, P. H., & Hu, H. (2005b). The effect of temperature on the rates of cyanide metabolism of two woody plants. Chemosphere, 59, 1099–1104.

    Article  CAS  Google Scholar 

  • Yu, X. Z., Gu, J. D., & Li, T. P. (2008). Availability of ferro- and ferri-cyanide complexes as a nitrogen source to cyanogenic plants. Archives of Environmental Contamination and Toxicology, 55, 229–237.

    Article  CAS  Google Scholar 

  • Yu, X. Z., Lu, P. C., & Yu, Z. (2012). On the role of beta-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings. Ecotoxicology, 21, 548–556.

    Article  CAS  Google Scholar 

  • Zagury, G. J., Oudjehani, K., & Deschenes, L. (2004). Characterization and availability of cyanide in solid mine tailings from gold extraction plants. Science of the Total Environment, 320, 211–224.

    Article  CAS  Google Scholar 

  • Zimmerman, A. R., Kang, D. H., Ahn, M. Y., Hyun, S., & Banks, M. K. (2008). Influence of a soil enzyme on iron–cyanide complex speciation and mineral adsorption. Chemosphere, 70, 1044–1051.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC: 40971256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, FZ., Yu, XZ. & Gu, JD. Transport and Assimilation of Ferricyanide by Three Willow Species. Water Air Soil Pollut 224, 1522 (2013). https://doi.org/10.1007/s11270-013-1522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1522-4

Keywords

Navigation