Skip to main content
Log in

Sorption of Phenanthrene on Agricultural Soils

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Polyaromatic hydrocarbon (PAH) sorption to soil is a key process deciding the transport and fate of PAH, and potential toxic impacts in the soil and groundwater ecosystems, for example in connection with atmospheric PAH deposition on soils. There are numerous studies on PAH sorption in relatively low organic porous media such as urban soils and groundwater sediments, but less attention has been given to cultivated soils. In this study, the phenanthrene partition coefficient, K D (liter per kilogram), was measured on 143 cultivated Danish soils (115 topsoils, 0–0.25-m soil depth and 28 subsoils, 0.25–1-m depth) by the single-point adsorption method. The organic carbon partition coefficient, K OC (liter per kilogram) for topsoils was found generally to fall between the K OC values estimated by the two most frequently used models for PAH partitioning, the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211–222, 1987) model and Karickhoff et al. (Water Research 13:241–248, 1979) model. A less-recognized model by Karickhoff (Chemosphere 10:833–846, 1981), yielding a K OC of 14,918 L kg−1, closely corresponded to the average measured K OC value for the topsoils, and this model is therefore recommended for prediction of phenanthrene mobility in cultivated topsoils. For lower subsoils (0.25–1-m depth), the K OC values were closer to and mostly below the estimate by the Abdul et al. (Hazardous Waste & Hazardous Materials 4(3):211–222, 1987) model. This implies a different organic matter composition and higher PAH sorption strength in cultivated topsoils, likely due to management effects including more rapid carbon turnover. Finally, we applied the recent Dexter et al. (Geoderma 144:620–627, 2008) theorem, and calculated the complexed organic carbon and non-complexed organic carbon fractions (COC and NCOC, grams per gram). Multiple regression analyses showed that the NCOC-based phenanthrene partition coefficient (K NCOC) could be markedly higher than the COC-based partition coefficient (K COC) for soils with a clay/OC ratio <10. This possibly higher PAH sorption affinity to the NCOC fraction needs further investigations to develop more realistic and accurate models for PAH mobility and effects in the environment, also with regard to colloid-facilitated PAH transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdul, A. S., & Gibson, T. L. (1986). Equilibrium batch experiments with six polycyclic aromatic hydrocarbons and two aquifer materials. Hazardous Waste & Hazardous Materials, 3(2), 125–137.

    Article  CAS  Google Scholar 

  • Abdul, A. S., Gibson, T. L., & Rai, D. N. (1987). Statistical correlations for predicting the partition-coefficient for nonpolar organic contaminants between aquifer organic-carbon and water. Hazardous Waste & Hazardous Materials, 4(3), 211–222.

    CAS  Google Scholar 

  • Ball, W. P., & Roberts, P. V. (1991). Long-term sorption of halogenated organic chemicals by aquifer materials. Part 1. Equilibrium. Environmental Science & Technology, 25, 1237–1249.

    Article  CAS  Google Scholar 

  • Brown, D. S., & Flagg, E. W. (1981). Empirical prediction of organic pollutant sorption in natural sediments. Journal of Environmental Quality, 10, 382–386.

    Article  CAS  Google Scholar 

  • Buco, S., Moragues, M., Doumenq, P., Noor, A., & Mille, G. (2004). Analysis of polycyclic aromatic hydrocarbons in contaminated soil by Curie point pyrolysis coupled to gas chromatography–mass spectrometry, an alternative to conventional methods. Journal of Chromatografical Science, 1026, 223–229.

    Article  CAS  Google Scholar 

  • Celis, R., de Jonge, H., de Jonge, L. W., Real, M., Hermosin, M. C., & Cornejo, J. (2006). The role of mineral and organic components in phenanthrene and dibenzofuran sorption by soil. European Journal of Soil Science, 57, 308–319.

    Article  CAS  Google Scholar 

  • de Jonge, L. W., Møldrup, P., de Jonge, H., & Celis, R. (2008). Sorption and Leaching of short-term-aged PAHs in eight European soils: Link to physicochemical properties and leaching of dissolved organic carbon. Soil Science, 173, 13–24.

    Article  Google Scholar 

  • Dexter, A. R., Richard, G., Arrouays, D., Czyz, E. A., Jolivet, C., & Duval, O. (2008). Complexed organic matter controls soil physical properties. Geoderma, 144, 620–627.

    Article  CAS  Google Scholar 

  • Gamst, J. (2002). Adsorption–desorption and effective diffusion of naphthalene in unsaturated soils. Ph.D. dissertation, Aalborg University.

  • Gee, G. W., & Bauder, J. W. (1982). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1 (Agronomy Monograph 9 2nd ed., pp. 383–411). Madison: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Grasso, D. (1993). Hazardous waste site remediation, source control. Connecticut: Lewis Publisher, Inc.

    Google Scholar 

  • Hansen, L. (1976). Soil types at the Danish state experimental stations. Tidsskrift for Planteavl, 80, 742–758.

    CAS  Google Scholar 

  • Hiller, E., Tatarkova, V., & Bartal, M. (2011). Long-term sorption behaviour of (4-chloro-2-methylphenoxy) acetic acid and phenanthrene in a cultivated soil. Mineralia Slovaca, 43, 431–436.

    CAS  Google Scholar 

  • Huang, W., Peng, P., Yu, Z., & Fu, J. (2003). Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Applied Geochemistry, 18, 955–972.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W. (1981). Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere, 10, 833–846.

    Article  CAS  Google Scholar 

  • Karickhoff, S. W., Brown, D. S., & Scott, T. A. (1979). Sorption of hydrophobic pollutants on natural sediments. Water Research, 13, 241–248.

    Article  CAS  Google Scholar 

  • Lamm, C. G. (1971). Det Danske Jordarkiv. Tidsskrift for Planteavl, 75, 703–720.

    Google Scholar 

  • Leboeuf, E. J., & Weber, W. J. (1997). A distributed reactivity model for sorption by soils and sediments, 8. Sorbent organic domains: discovery of a humic glass transition and an argument for a polymer-based model. Environmental Science & Technology, 31, 1697–1702.

    Article  CAS  Google Scholar 

  • Liu, Z. B., Laha, S. L., & Luthy, R. G. (1991). Surfactant solubilization of polycyclic aromatic hydrocarbon compounds in soil–water suspensions. Water Science and Technology, 23(1–3), 475–485.

    CAS  Google Scholar 

  • Luthy, R. G., Aiken, G. R., Brusseau, M. L., Cunningham, S. D., Gschwend, P. M., Pignatello, J. J., et al. (1997). Sequestration of hydrophobic organic contaminants by geosorbents. Environmental Science & Technology, 31(12), 3341–3347.

    Article  CAS  Google Scholar 

  • Mabey, W.R., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chou, T-W., Gates, J., Waight Partridge, I., Jaber, H., Vandenberg, D. (1982). Aquatic fate process data for organic priority pollutants. Washington, DC: US Environmental Protection Agency, Office of Water Regulations and Standards (Report no. EPA 440/4-81-014; NTIS no. PB87-169090/XAB).

  • Mackay, D., & Callcott, D. (1998). Partitioning and physical chemical properties of PAHs. In A. H. Neilson (Ed.), The handbook of environmental chemistry: PAHs and related compounds (pp. 325–346). New York: Springer.

    Google Scholar 

  • Maxin, C. R., & Kogelknabner, I. (1995). Partitioning of polycyclic aromatic-hydrocarbons (PAH) to water-soluble soil organic-matter. European Journal of Soil Science, 46, 193–204.

    Article  CAS  Google Scholar 

  • Møberg, J. P. L., Petersen, L., & Rasmussen, K. (1988). Constituents of some widely distributed soils in Denmark. Geoderma, 42, 295–316.

    Article  Google Scholar 

  • Pignatello, J. J. (1989). Sorption dynamics of organic compounds in soils and sediments. In B. L. Sawhney & K. Brown (Eds.), Reactions and movement of organic chemicals in soil (pp. 45–80). Madison: SSSA.

    Google Scholar 

  • Pignatello, J. J. (1998). Soil organic matter as a nanoporous sorbent of organic pollutants. Advances in Colloid and Interface Science, 77, 445–467.

    Article  Google Scholar 

  • Prager, J. C. (1995). Phenanthrene. In Van Nostrand Reinhold (Ed.), Environmental contaminant Reference Databook (pp. 919–920). New York: Van Nostrand Reinhold Co.

    Google Scholar 

  • Reardon, K. F., Mosteller, D. C., Rogers, J. B., DuTeau, N. M., & Kim, K. H. (2002). Biodegradation kinetics of aromatic hydrocarbon mixtures by pure and mixed bacterial cultures. Environmental Health Perspectives, 110, 1005–1011.

    Article  CAS  Google Scholar 

  • Schjonning, P., de Jonge, L. W., Munkholm, L. J., Moldrup, P., Christensen, B. T., & Olesen, J. E. (2012). Clay dispersibility and soil friability—testing the soil clay-to-carbon saturation concept. Vadose Zone Journal, 11(1), 174–187.

    Article  Google Scholar 

  • Shin, K. H., Kim, K. W., Kim, J. Y., Lee, K. E., & Han, S. S. (2008). Rhamnolipid morphology and phenanthrene solubility at different pH values. Journal of Environmental Quality, 37, 509–514.

    Article  CAS  Google Scholar 

  • Soares, A. A., Albergaria, J. T., Domingues, V. F., Alvim-Ferraz, M. C. M., & Delerue-Matos, C. (2010). Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere, 80, 823–828.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A., & Bremner, J. M. (1970). Use of the Leco automatic 70-record carbonanalyzer for total carbon analysis of soils. Soil Science Society of America Journal, 34(4), 608–610.

    Article  CAS  Google Scholar 

  • Thomas, W. (1986). Accumulation of airborne trace pollutants by arctic plants and soil. Water Science and Technology, 18(2), 47–57.

    CAS  Google Scholar 

  • Weber, W. J., Jr., & Huang, W. (1996). A distributed reactivity for sorption by soils and sediments. 4. Intraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environmental Science & Technology, 30(3), 881–888.

    Article  CAS  Google Scholar 

  • White, C. M., & Lee, M. L. (1980). Identification and geochemical significance of some aromatic components of coal. Geochimica et Cosmochimica Acta, 44, 1825–1832.

    Article  CAS  Google Scholar 

  • Xing, B., & Pignatello, J. J. (1997). Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environmental Science & Technology, 31, 792–799.

    Article  CAS  Google Scholar 

  • Yeom, I. T., Ghosh, M. M., & Cox, C. D. (1996). Kinetic aspects of surfactant solubilization of soil-bound polycyclic aromatic hydrocarbons. Environmental Science & Technology, 30, 1589–1595.

    Article  CAS  Google Scholar 

  • Young, T. M., & Weber, W. J. (1995). A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics. Environmental Science & Technology, 29, 92–97.

    Article  CAS  Google Scholar 

  • Yu, H. S., Zhu, L. Z., & Zhou, W. J. (2007). Enhanced desorption and biodegradation of phenanthrene in soil–water systems with the presence of anionic–nonionic mixed surfactants. Journal of Hazard Materials, 142, 354–361.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was funded by the large framework project Soil Infrastructure, Interfaces, and Translocation Processes in Inner Space (“Soil-it-is”) from the Danish Research Council for Technology and Production Sciences, and by the EU project "Fundação para a Ciência e Tecnologia" (Project SFRH/BD/69565/2010) and “Programa Operacional Humano” (POPH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Alves Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, A.A., Moldrup, P., Minh, L.N. et al. Sorption of Phenanthrene on Agricultural Soils. Water Air Soil Pollut 224, 1519 (2013). https://doi.org/10.1007/s11270-013-1519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1519-z

Keywords

Navigation