Skip to main content
Log in

Development of a Passive Sampler for Monitoring of Carbamate and s-Triazine Pesticides in Surface Waters

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

A new sampling system has been developed for the measurement of time-averaged concentrations (TWA) and diffusion coefficients of organic micropollutants in aquatic environments. The system is based on the diffusion of targeted organic compounds through a rate-limiting membrane and the subsequent accumulation of these species in a bound, hydrophobic solid-phase material. Two separate prototype systems are described. One is suitable for the sampling of carbamates such as carbaryl, carbofuran, 3-hydroxycarbofuran, baygon, propham, clorpropham, and the other one for s-triazines such as atrazine, prometryn, propazine, simazine, terbuthylazine, terbutryn, metribuzin, cyanazine, and metamitron pesticides. The systems use solid-phase material (47-mm C18 Empore disk) as the receiving phase but are fitted with rate-limiting membranes of either polysulfone or polycarbonate. For the two designs investigated, the cumulative uptake of all target analytes was considered over exposure periods of 7 days. The determined sampling rates ranged from 0.1323 to 0.0465 L day−1 with both membranes. The best system was the one with the polysulfone membrane allowing a better cumulative uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barceló, D., & Hennion, M. C. (1997). Sampling of polar pesticides from water matrices. Analytica Chimica Acta, 338(1), 3–18.

    Article  Google Scholar 

  • Bernal-González, M. (2008). Desarrollo de un muestreador pasivo para carbamatos y triazinas en agua. Tesis doctoral. Programa de Maestría y Doctorado en Ingeniería, Ingeniería Ambiental. UNAM. México D.F. México

  • Booij, K., Hofmans, H. E., Fischer, C. V., & Van Weerlee, E. M. (2003). Temperature-dependent uptake rates of nonpolar organic compounds by semipermeable membrane devices and low-density polyethylene membranes. Environmental Science and Technology, 37, 361–366.

    Article  CAS  Google Scholar 

  • Bozena, Z., Górecki, T., & Nammiésnik, J. (2003). Calibration of permeation passive samplers with silicone membranes based on physicochemical properties of the analytes. Analytical Chemistry, 75, 3182–3192.

    Article  Google Scholar 

  • Chen, J., & Pawliszyn, J. B. (1995). Solid phase microextraction coupled to high-performance liquid chromatography. Analytical Chemistry, 67(15), 2530–2533.

    Article  CAS  Google Scholar 

  • Clóvis, L. S., Lima, E. C., & Tavares, M. (2003). Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real simples by capillary electrophoresis. Journal of Chromatography A, 1014, 109–116.

    Article  Google Scholar 

  • Colin, F. P., Gunatilleka, A. D., & Sethurama, R. (2000). Contribution of theory to method development in solid-phase extraction. Journal of Chromatography A, 885, 17–39.

    Article  Google Scholar 

  • De Jonge, H. (2005). New device and method for flux-proportional sampling of mobile solute in soil and groundwater. Environmental Science and Technology, 39, 274–282.

    Article  Google Scholar 

  • Du Prezz, L. H., Jansen, P. J., van Rensburg, A. M., Jooste, J. A., Carr, J. P., Giesy, T. S., Gross, R. J., Kendall, E. E., Smith, G., Van Derkraak, K., & Solomons, R. (2005). Seasonal exposure to triazine and other pesticides in surface waters in the western Highveld corn-production region in South Africa. Environmental Pollution, 135(1), 131–141.

    Article  Google Scholar 

  • Eisert, R., & Pawliszyn, J. (1997). Automated in-tube solid-phase microextraction coupled to high-performance liquid pesticides. Analytical Chemistry, 69(16), 3140–3147.

    Article  CAS  Google Scholar 

  • Eisert, R., & Pawlyszyn, J. (1997). New trends in solid-phase microextraction. Analytical Chemistry, 27(2), 103–135.

    CAS  Google Scholar 

  • Fernández-Alba, A. R., Agüera, A., Contreras, M., Panuela, R., Ferrer, I., & Barceló, D. (1998). Comparison of various sample handling and analytical procedures for the monitoring of pesticides and metabolites in ground waters. Journal of Chromatography A, 823, 35–47.

    Article  Google Scholar 

  • Ferrer, I., Thurman, E. M., & Barceló, D. (2000). First LC/MS determination of cyanazine amide, cyanazine acid and cyanazine in groundwater sample. Environmental Science and Technology, 34(4), 714–718.

    Article  CAS  Google Scholar 

  • Fialkov, A. B., Gordin, A., & Amirav, A. (2003). Extending the range of compounds amenable for gas chromatography–mass spectrometric analysis. Journal of Chromatography A, 991, 213–240.

    Article  Google Scholar 

  • Fick, A. (1855). Ueber Diffusion. Annalen der Physik, 170(1), 59–86.

  • Górecki, T., & Namieśnik, J. (2002). Passive sampling. Analytical Chemistry, 21(4), 276–291.

    Google Scholar 

  • Gustavson, K. E., & Harkin, J. M. (2000). Comparison of sampling techniques and evaluation of semipermeable membrane devices (SPMDs) for monitoring polynuclear aromatic hydrocarbons in groundwater. Environ Sci Technol, 34(20), 4445–4451.

    Article  CAS  Google Scholar 

  • Harner, T., Shoeib, M., Diamond, M., Stern, G., & Rosenberg, B. (2004). Using passive air samplers to assess urban–rural trends for persistent organic pollutants. 1. Polychlorinated biphenyls and organochlorine pesticides. Environmental Science and Technology, 38, 4474–4483.

    Article  CAS  Google Scholar 

  • Hauser, B., Shellin, M., & Popp, P. (2004). Membrane-assisted solvent extraction of triazines, organochlorine and organophosphorus compounds in complex samples combined with large-volume injection-gas chromatography/mass spectrometric detection. Analytical Chemistry, 76, 6029–6038.

    Article  CAS  Google Scholar 

  • Helma, C., Eckl, P., Gottmann, E., Kassie, F., Rodinger, W., Steinkeller, H., Windpassinger, C., & Schulte-Hermann, R. (1998). Genotoxic and ecotoxic effects of groundwaters and their relation to routinely measured chemical parameters. Environmental Science and Technology, 32, 1799–1805.

    Article  CAS  Google Scholar 

  • Hennion, M. C., Cau-Dit-Coumes, C., & Pichon, V. (1998). Trace analysis of polar organic pollutants in aqueous samples tools for the rapid prediction and pesticides on of the solid-phase extraction parameters. Journal of Chromatography A, 823, 147–161.

    Article  CAS  Google Scholar 

  • Hernández, F., Sancho, J. V., Pozo, O., Lara, A., & Pitarch, E. (2001). Rapid direct determination of pesticides and metabolites in environmental water samples at sub-microg/L level by on-line solid-phase extraction-liquid chromatography-electrospray tandem mass. Journal of Chromatography A, 939, 1–11.

    Article  Google Scholar 

  • Holger, M., Bradley, M. P., & Greg, B. D. (2003). Field trial of contaminant groundwater monitoring: comparing time-integrating ceramic dosimeters and conventional water sampling. Environmental Science and Technology, 37(7), 1360–1364.

    Article  Google Scholar 

  • Huckins, J. N., Tubergen, M. W., & Manuweera, G. K. (1990). Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere, 20(5), 533–552.

    Article  CAS  Google Scholar 

  • Huckins, J. N., Petty, J. D., Lebo, J. A., Almeida, F. V., Booij, K., Alvarez, D. A., Cranor, W. L., Clark, R. C., & Mogensen, B. (2002). Development of the permeability performance reference compound approach for in situ calibration of semipermeable membrane devices. Environmental Science and Technology, 36, 85–91.

    Article  CAS  Google Scholar 

  • Jiang, H., Adams, C. D., & Koffskey, W. (2005). Determination of chloro-s-triazines including didealkylatrazine using solid-phase extraction coupled with has chromatography–mass spectrometry. Journal of Chromatography A, 1064, 219–226.

    Article  CAS  Google Scholar 

  • Katsumaya, H., Fujii, A., Kaneo, S., Suzuki, T., & Ohta, K. (2005). Determination of simazine in water by HPLC after preconcentration with diatomaceous earth. Talanta, 65, 129–134.

    Google Scholar 

  • Kingston, J. K., Greenwood, R., Mills, G. A., Morrison, G. M., & Persson, B. L. (2000). Development of novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. Journal of Environmental Monitoring, 2, 487–495.

    Article  CAS  Google Scholar 

  • Kochman, M., Gordin, A., Goldshlag, P., Lehotay, S. J., & Amirav, A. (2002). Fast, high-sensitivity, multipesticides analysis of complex mixtures with supersonic gas chromatography-mass spectrometry. Journal of Chromatography A, 974, 185–212.

    Article  CAS  Google Scholar 

  • Liska, I. (2000). Fifty years of solid-phase extraction in water analysis—historical development and overview. Journal of Chromatography A, 885, 3–16.

    Article  CAS  Google Scholar 

  • López, A. V. (1999). Sample preparation for environmental analysis. Analytical Chemistry, 29(3), 195–230.

    Google Scholar 

  • Namiésnik, J. (2000). Trends in environmental analytical and monitoring. Analytical Chemistry, 30, 221–269.

    Google Scholar 

  • Namieśnik, J., Zabiegala, B., Kot-Wasik, A., Partyka, M., & Wasik, A. (2005). Passive sampling and/or extraction techniques in environmental analysis: a review. Analytical and Bioanalytical Chemistry, 381, 279–301.

    Article  Google Scholar 

  • Parrott, J. L., Backus, S. M., Borgmann, A. I., & Swyripa, M. (1999). The use of semipermeable membrane devices to concentrate chemicals in oil refinery effluents on the Mackenzie River. Analytical Chemistry, 52(2), 125–138.

    Google Scholar 

  • Petty, J. D., Jones, S. B., Huckins, J. N., Cranor, W. L., Parris, J. T., McTague, T. B., & Boyle, T. P. (2000). An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests. Chemosphere, 41, 311–321.

    Article  CAS  Google Scholar 

  • Petty, J. D., Huckins, J. N., Alvarez, D. A., Brumbaugh, W. G., Cranor, W. L., Gale, R. W., Rastall, A. C., Jones-Lepp, T. L., Leiker, T. J., Rostad, C. E., & Furlong, E. T. (2004). A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants. Chemosphere, 54(6), 695–705.

    Article  CAS  Google Scholar 

  • Pichon, V. (2000). Solid-phase extraction for multiresidue analysis of organic contaminants in water. Journal of Chromatography A, 885, 195–215.

    Article  CAS  Google Scholar 

  • Pozo, K., Harner, T., Shoeib, M., Urrutia, R., Barra, R., Parra, O., & Focardi, S. (2004). Passive-sampler derived air concentrations of persistent organic pollutants on a north–south transect in Chile. Environmental Science and Technology, 38, 6529–6537.

    Article  CAS  Google Scholar 

  • Richter, P., Sepúlveda, B., Oliva, R., Calderón, K., & Sequel, R. (2003). Screening and determination of pesticides in soil using continuous subcritical water extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 994, 169–177.

    Article  CAS  Google Scholar 

  • Sánchez, C., Carisson, H., Colmsjö, A., Crescenzi, C., & Batlle, R. (2003). Determination of nitroaromatic compounds in air samples at femtogram level using C18 membrane sampling and on line extraction with LC-MS. Analytical Chemistry, 75, 4639–4645.

    Article  Google Scholar 

  • Söderström, H., & Bergqvist, A. P. (2004). Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds. Environmental Science and Technology, 38, 4828–4834.

    Article  Google Scholar 

  • Söedergren, A. (1987). Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms. Environmental Science and Technology, 21(9), 855–859.

    Article  Google Scholar 

  • Stuer-Lauridsen, F. (2005). Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environmental Pollution, 136, 503–524.

    Article  CAS  Google Scholar 

  • Tuzimski, T., & Soczewinsk, K. (2002). Correlation of retention parameters of pesticides in normal- and reversed-phase systems and their utilization for the separation of a mixture of 14 triazines and urea herbicides by means of two-dimensional thin-layer chromatography. Journal of Chromatography A, 961, 277–282.

    Article  CAS  Google Scholar 

  • Verweij, F., Booij, K., Satumalay, K., Van der Molen, N., & Van der Oost, R. (2004). Assessment of bioavailable PAH, PCB and OCP concentration in water, using semipermeable membrane device (SPMDs), sediments and caged carp. Chemosphere, 54, 1675–1689.

    Article  CAS  Google Scholar 

  • Vrana, B., Mills, G., Greenwood, R., Knutsson, J., Svensson, K., & Morrison, G. (2005). Performance optimization of a passive sampler for monitoring hydrophobic organic pollutants in water. Journal of Environmental Monitoring, 7, 612–620.

    Article  CAS  Google Scholar 

  • Vrana, B., Allan, I. J., Greenwood, R., Mills, G. A., Dominiak, E., Svensson, K., Knutsson, J., & Morrison, G. (2005). Passive sampling techniques for monitoring of pollutants in water. TrAC Trends in Analytical Chemistry, 24(10), 845–868.

    Article  CAS  Google Scholar 

  • Vrana, B., Paschke, A., & Popp, P. (2006). Calibration and field performance of membrane-enclosed sorptive coating for integrative passive sampling of persistent organic pollutants in water. Environmental Pollution, 144(1), 296–307.

    Article  CAS  Google Scholar 

  • Wania, F., She, L., Lei, Y. D., Teixeira, C., & Muir, D. C. G. (2003). Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere. Environmental Science and Technology, 37(7), 1352–1359.

    Article  CAS  Google Scholar 

  • Wells, M. J., & Zhou, L. (2000). Solid-phase extraction of acidic herbicides. Journal of Chromatography A, 885, 237–250.

    Article  CAS  Google Scholar 

  • Wenzel, K. D., Vrana, B., Hubert, A., & Schuurmann, G. (2004). Dialysis of persistent organic pollutants and polycyclic aromatic hydrocarbons from semipermeable membranes. A procedure using an accelerated solvent extraction device. Analytical Chemistry, 76(18), 5503–5509.

    Article  CAS  Google Scholar 

  • Whyte, J. J., Karrow, N. A., Boermann, H. J., Dixon, D. G., & Bols, N. C. (2000). Combined methodologies for measuring exposure of rainbow trout (Oncorhynchus mykiss) to polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated microcosms. Polycyclic Aromatic Compounds, 18(1), 71–98.

    Article  CAS  Google Scholar 

  • Xu, Y., Wang, Z., Ke, R., & Khan, S. U. (2005). Accumulation of organochlorine pesticides from water using triolein embedded cellulose acetate membranes. Environmental Science and Technology, 32(24), 3887–3892.

    Google Scholar 

  • Zygmunt, B., Jastrzecbska, A., & Namiesnik, J. (2001). Solid phase microextraction-A convenient tool for the determination of organic pollutants in environmental matrices. Analytical Chemistry, 31(1), 1–18.

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the Laboratorios de Ingeniería Química Ambiental y de Química Ambiental (LIQAyQA), Faculty Chemistry, UNAM; the helpful discussion with Prof. Enrique Chávez-Castellanos on the mass transfer equations; and the helpful academic discussions with Prof. Federico García-Jimenéz, Mrs. Prof. María T. Leticia Rosales-Hoz, Mrs. Prof. Mabel Vaca-Mier, and Mrs. Prof. María Teresa Orta-Ledesma were gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisela Bernal-González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal-González, M., Durán-Domínguez-de-Bazúa, C. Development of a Passive Sampler for Monitoring of Carbamate and s-Triazine Pesticides in Surface Waters. Water Air Soil Pollut 223, 5071–5085 (2012). https://doi.org/10.1007/s11270-012-1259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1259-5

Keywords

Navigation