Skip to main content
Log in

Adaptation of Working Conditions of an Operating Drinking Water Treatment Plant to Remove Naturally Occurring Radionuclides

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Naturally occurring radionuclides such as uranium and radium are present in water used for human consumption. There are several procedures to remove the uranium and/or radium content in drinking water, although they have mainly been used just in laboratory tests, and in only a few cases in pilot plants. In the present work, an operating drinking water treatment plant (DWTP) with gross alpha activity above the 0.1 Bq L−1 threshold was selected, with the water’s uranium content being principally responsible for this activity. The routine procedure used in the DWTP was incapable of removing this activity from the drinking water. A modification of the procedure in the coagulation–flocculation step successfully removed 50–83 % of the uranium from the drinking water finally consumed by the population, with the resulting gross alpha activity being reduced to below 0.1 Bq L−1. The modified procedure was reversible—whenever the procedure was halted, no uranium was removed. The uranium removed ended up concentrated in the sludge generated by the plant. A sequential extraction procedure applied to the sludge showed most of it to be attached to the easily and moderately reducible fractions and hence extractable with hydroxylamine and ammonium oxalate, respectively. This was because in the coagulation–flocculation process, the uranium was essentially removed by association with aluminium oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • AWWA, American Water Works Association (2002). Calidad y tratamiento del agua. Manual de suministros de agua comunitaria. Madrid: McGraw-Hill (in Spanish).

  • Baeza, A., del Río, L. M., Jiménez, A., Miró, C., & Paniagua, J. M. (1995). Factors determining the radioactivity levels of waters in the province of Cáceres (Spain). Applied Radiation and Isotopes, 46(10), 1053–1059.

    Article  CAS  Google Scholar 

  • Baeza, A., del Río, L. M., & Jiménez, A. (1998). Procedure for Simultaneous Determination of 223,224,226,228Ra by Alpha and Gamma Spectrometry. Radiochimica Acta, 83, 53–60.

    CAS  Google Scholar 

  • Baeza, A., Fernández, M., Herranz, M., Legarda, F., Miró, C., & Salas, A. (2004). Elimination of man-made radionuclides from natural waters by applying a standard coagulation–flocculation process. Journal of Radioanalytical and Nuclear Chemistry, 260(2), 321–326.

    Article  CAS  Google Scholar 

  • Baeza, A., Fernández, M., Herranz, M., Legarda, F., Miró, C., & Salas, A. (2006). Removing uranium and radium from a natural water. Water, Air, and Soil Pollution, 173, 57–69.

    Article  CAS  Google Scholar 

  • Baeza, A., Salas, A., & Legarda, F. (2008). Determining factors in the elimination of uranium and radium from groundwaters during a standard potabilization process. Science of the Total Environment, 406, 24–34.

    Article  CAS  Google Scholar 

  • Baeza, A., Salas, A., Legarda, F., Herranz, M. (2009). Validation of operational changes to the standard process of water potabilization to maximize the removal of the uranium content. In: Wolfe, G.H (Ed.) Uranium, compounds, isotopes and applications. Hauppauge: Nova Science Publishers Inc.

  • Baeza, A., Corbacho, J. A., Guillén, J., Salas, A., & Mora, J. C. (2011). Analyses of the different source terms of natural radionuclides in a river affected by NORM (naturally occurring radioactive materials) activities. Chemosphere, 83, 933–940.

    Article  CAS  Google Scholar 

  • Banks, D., Reimann, C., & Skarphagen, H. (1998). The comparative hydrochemistry of two granitic island aquifers: the Isles of Stilly, UK and the Hvaler Islands, Norway. Science of the Total Environment, 209, 169–183.

    CAS  Google Scholar 

  • Barisic, D., Lucic, S., & Miletic, P. (1992). Radium and uranium in phosphate fertilizers and their impact on the radioactivity of waters. Water Research, 20(5), 607–611.

    Article  Google Scholar 

  • BOE, Boletín Oficial del Estado (1987). Métodos oficiales de análisis físico-químicos para aguas potables de consumo public (pp. 20911–20919). Boletín Oficial del Estado, No. 163, Madrid. (in Spanish)

  • BOE, Boletín Oficial del Estado (2003). Criterios sanitarios de la calidad del agua de consumo humano (p. 7228). Real Decreto 140/2003 de 7 de febrero, No. 45 de 21 de Febrero de 2003, Madrid (in Spanish).

  • Catalán Lafuente, J. G. (1990). Química del agua, Ed. el autor, 2ª ed., Madrid, Spain (in Spanish).

  • EPA, Environmental Protection Agency (1980). Prescribed procedures for measurement of radioactivity in drinking water. Gross alpha and gross beta radioactivity in drinking water. Method 900.0, 600/4-80-032.

    Google Scholar 

  • EU (1998). European Directive. 98/83/EC, related with drinking water quality intended for human consumption, Brusels, Begium, L330;32–54.

  • Fox, P. M., Davis, J. A., & Zachara, J. M. (2006). The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochimica et Cosmochimica Acta, 70, 1379–1387.

    Article  CAS  Google Scholar 

  • Frengstad, B., Midtgard Skrede, Aa, Banks, D., Krog, J. R., & Siewers, U. (2000). The chemistry of Norwegian groundwaters III. The distribution of trace elements in 476 crystalline bedrock groundwaters as analyzed by ICP-MS techniques. Science of the Total Environment, 246, 21–40.

    Article  CAS  Google Scholar 

  • Hanson, S. W., Wilson, D. B., Gunaji, N. N. (1987). Removal of uranium from drinking water by ion exchange and chemical clarification. U.S. EPA Report 600/52-87/076.

  • Hess, C. T., Michel, J., Horton, T. R., Prichard, H. M., & Coniglio, W. A. (1985). The occurrence of radioactivity in public water supplies in the United States. Health Physics, 48, 553–586.

    Article  CAS  Google Scholar 

  • ISO/DIS 9696 (1992). Water quality-measurement of gross alpha activity in non-saline water. Thick source method. International Organization for Standarization.

  • ISO/IEC 17025 (2005). General requirements for the competence of testing and calibration laboratories. International Organization for Standarization.

  • Jimenez, A., & Rufo, M. M. (2002). Effect of water purification on its radioactive content. Water Research, 36, 1715–1724.

    Article  CAS  Google Scholar 

  • Jones, R. L. (2004). Human exposure to uranium in groundwater. Environmental Research, 94, 319–26.

    Article  Google Scholar 

  • Katsoyiannis, I. A., Althoff, H. W., Bartel, H., & Jekel, M. (2006). The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides. Water Research, 40, 3646–3652.

    Article  CAS  Google Scholar 

  • Katsoyiannis, I. A., Hug, S. J., Ammann, A., Zikoudi, A., & Hatziliontos, C. (2007). Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 383(1–3), 128–140.

    Article  CAS  Google Scholar 

  • Lee, S. Y., & Bondietti, E. A. (1983). Removing uranium from drinking water by metal hydroxides and anion exchange resin. Journal of the American Water Works Association, 75(10), 536–540.

    CAS  Google Scholar 

  • Lee, S. Y., Hall, S. K., Bondietti, E. A. (1982). Methods of Removing Uraniun from Drinking Water: II. Present Municipal Water Treatment and Potential Removal Methods. Office of Drinking Water, U.S. EPA 570/9-82/003.

  • Moore, W. S. (1978). Preparing manganese oxide coated acrylic giber and article therefrom. United States Patent No. 4.087.853.

  • Otton, J. K. (1994). Natural Radioactivity in the Environment. Technical report, U.S. Geological Survey, Energy Resource Surveys Program.

  • Real, J., Bourrasse, M., Feuerstein, J., & Rouxel, R. (2000). Influence des techniques de potabilisation sur la qualité radiologique de l’eau. Radioprotection, 35, 31–44.

    Article  CAS  Google Scholar 

  • Salomons, W., & Försner, U. (1980). Trace metals analysis on polluted sediments. Part 2, evaluation of environmental impact. Environmental Technology Letters, 1, 506–517.

    Article  CAS  Google Scholar 

  • Schriks, M., Heringa, M. B., van der Kooi, M. M. E., de Voogt, P., & van Wezel, A. P. (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water Research, 44, 461–476.

    Article  CAS  Google Scholar 

  • Sill, C. W. (1987). Precipitation of actinides as fluorides or hydroxides for high-resolution alpha spectrometry. Nuclear Chemical Waste Management, 7(3–4), 201–215.

    Article  CAS  Google Scholar 

  • Sorg, Th. J. (1990). Removal of Uranium from drinking water by conventional treatment methods. In: Cothen, C.R., Rebers, P.A. (Eds.) Radon, radium and uranium in drinking water. Chelsea: Lewis Publishers, Inc.

  • Suarez, E., Fernández, J. A., Baeza, A., Moro, M. C., García, D., Moreno, J., et al. (2000). Proyecto Marna. Mapa de radiación gamma natural”. Colección de Informes Técnicos 5. Consejo de Seguridad Nuclear. (in Spanish).

  • Tessier, A., Campbell, P. G. C., & Visón, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 57(7), 844–851.

    Article  Google Scholar 

  • Valentine, R. L., Splinter, R. C., Horng, J. J., Nogaj, T. M. (1985). Factors affecting radium reduction in an iron removal process. In: Proceedings of American Water Works Association Annual Conference.

  • WHO (1979). Radiological examination of drinking-water. World Health Organization, Euroreport 17.

  • WHO (2004). World Health Organization, Uranium in drinking water. Background document for the development of WHO guidelines for drinking-water quality. WHO/SDE/WSH/03.04/118.

Download references

Acknowledgements

This work was made possible by the financial support provided by Spain’s Nuclear Safety Board (CSN) and ENRESA. We are also grateful to the Autonomous Government of Extremadura (Junta de Extremadura) for financial support granted to the LARUEX research group (FQM001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Guillén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeza, A., Salas, A. & Guillén, J. Adaptation of Working Conditions of an Operating Drinking Water Treatment Plant to Remove Naturally Occurring Radionuclides. Water Air Soil Pollut 223, 5057–5069 (2012). https://doi.org/10.1007/s11270-012-1258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1258-6

Keywords

Navigation