Skip to main content
Log in

Salix rubens and Salix triandra Species as Phytoremediators of Soil Contaminated with Petroleum-Derived Hydrocarbons

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The petroleum industry activities provide potential risks to the environment because they can contaminate ecosystems with different organic compounds in the production chain. Several accidents with transport and handling of petroleum and related products occurred in urban areas with harmful effects to the quality of life and economy. In the 1990s, bioremediation and phytoremediation technologies as economically feasible alternatives to repair the environmental damage were developed. In this study, the potential of the willows Salix rubens and Salix triandra were evaluated with regard to the phytoremediation of soils contaminated with petroleum-derived hydrocarbons (total hydrocarbons and polycyclic aromatic hydrocarbons (PAHs)). The PAHs were quantified by extraction from soils and plants using dichloromethane under ultrasonication. The HPLC analysis was performed with GC/MSD equipment. The total hydrocarbons present in uncontaminated soil were quantified by the sum of animal/vegetable oils and greases and mineral oils and greases according to Standard Methods 5520 (1997). The two willows species S. rubens and S. triandra were resistant during the project development. In the contaminated soil, in which both species were planted, the total hydrocarbons concentration was reduced near 98 %. The PAHs content was remarkably reduced as well. Pyrene showed an initial concentration of 23.06 μg kg−1, decreasing in most cases to 0.1 μg kg−1 or to undetectable levels. Chrysene decreased from 126.27 μg kg−1 to undetectable levels. Benzo[k]fluoranthene and benzo[a]pyrene concentrations had also showed a decrease from 28.44 and 3.82 μg kg−1, respectively, to undetectable levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Anastas, P. T., Sonich-Mullin, C., & Fried, B. (2010). Designing science in a crisis: The deepwater horizon oil spill. Environmental Science & Technology, 44(24), 9250–9251.

    Article  CAS  Google Scholar 

  • Andreoni, V., Cavalca, L., Rao, M. A., Nocerino, G., Bernasconi, S., Dell’amico, E., Colombo, M., & Gianfreda, L. (2004). Bacterial communities and enzyme activities of PAH polluted soils. Chemosphere, 57, 401–412.

    Article  CAS  Google Scholar 

  • Anselmo, A. L. F., & Jones, C. M. (2005). Fitorremediação de solos contaminados—o estado da arte (pp. 5273–5280). Porto Alegre: XXV Encontro Nacional de Engenharia de Produção, ENEGEP.

    Google Scholar 

  • Aps, R., Fetissow, M., Herkül, K., Kotta, J., Leiger, R., Mander, Ü., & Suursaar, Ü. (2009). Bayesian inference for predicting potential oil spill related ecological risk. WIT Transactions on the Built Environment, 108, 149–159.

    Article  Google Scholar 

  • Bamforth, S., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80, 723–736.

    Article  CAS  Google Scholar 

  • Casa, J., Boff, M. I. C., Rech, T. D., & Boff, P. (2007). Resistência do vimeiro, Salix spp. (Salicaceae), a pragas e doenças. Ciência Florestal, 17(1), 1–8.

    Google Scholar 

  • Cole, G. M. (1994). Assessment and remediation of petroleum contaminated sites. Boca Raton: CRC Press-Lewis Publishers.

    Google Scholar 

  • Cunningham, S. D., Anderson, T. A., & Schwab, A. P. (1996). Phytoremediation of soils contaminated with organic pollutants. Advances in Agronomy, 56, 55–114.

    Article  CAS  Google Scholar 

  • Davidson, W. F., Lee, K., & Cogswell, A. (2008). Oil spill response: a global perspective. Dordrecht: Springer.

    Book  Google Scholar 

  • Deotti, L. O. G. (2005). Controle de pH na técnica de biorremediação eletrocinética. Rio de Janeiro: Universidade Federal do Rio de Janeiro, COPPE/UFRJ, Master of Science.

    Google Scholar 

  • Diab, E. A. (2008). Phytoremediation of oil contaminated desert soil using the rhizosphere effects. Global Journal of Environmental Research, 2(2), 66–73.

    Google Scholar 

  • Dinardi, A. L., Formagi, V. M., Coneglian, C. M. R., Brito, N. N., Sobrinho, G. D., Tonso, S., & Pelegrini, R. (2003). Fitorremediação. Limeira: III Fórum de Estudos Contábeis, UNICAMP, Curso de Tecnologia em Saneamento Ambiental, Laboratório de Pesquisas Ambientais.

    Google Scholar 

  • Ferraz, W. H. S. (2005). Determinação Cromatográfica dos Hidrocarbonetos Policíclicos Aromáticos (HPAs) no material particulado atmosférico coletado com impactador em cascata. Lobdrina: Universidade Estadual de Londrina, PR, Master of Science.

    Google Scholar 

  • Jernelöv, A. (2010). How defend against oil spills. Nature, 466, 182–183.

    Article  Google Scholar 

  • Ma, C., & Kingscott, J. (1997). Recent developments for in situ treatment of metal contaminated soils. Washington: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Technology Innovation Office.

    Google Scholar 

  • McCall, B. D., & Pennings, S. C. (2012). Disturbance and recovery of salt marsh arthropod communities following BP deepwater horizon oil spill. PLoS ONE, 7(3), e32735. 1-7.

    Article  CAS  Google Scholar 

  • McCutcheon, S. C., & Schnoor, J. L. (2003). Phytoremediation: Transformation and control of contaminants. New Jersey: Wiley.

    Google Scholar 

  • Meers, E., Lamsal, S., Vervaeke, P., Hopgood, M., Lust, N., & Tack, F. M. G. (2005). Availability of heavy metals for uptake by Salix viminalis on a moderately contaminated dredged sediment disposal site. Environmental Pollution, 137, 354–364.

    Article  CAS  Google Scholar 

  • Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J., & Tack, F. (2007). Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environmental and Experimental Botany, 60, 57–68.

    Article  CAS  Google Scholar 

  • Mertens, J., Vervaeke, P., Meers, E., & Tack, F. M. G. (2006). Seasonal changes of metals in willow (Salix sp.) stands for phytoremediation on dredged sediment. Environmental Science & Technology, 40, 1962–1968.

    Article  CAS  Google Scholar 

  • Moura, V. P. G. (2002). Introdução de novas espécies de Salix (Salicaceae) no Planalto Sul de Santa Catarina, Brasil (p. 71). Brasília: Embrapa, Comunicado Técnico.

    Google Scholar 

  • Netto, A. D. P., Moreira, J. C., Dias, A. X. O., Arbilla, G., Ferreira, L. F. V., Oliveira, A. S., & Barek, J. (2000). Avaliação da contaminação humana por hidrocarbonetos policíclicos aromáticos (HPAS) e seus derivados nitrados (NHPAs): uma revisão metodológica. Química Nova, 23(6), 765–773.

    Article  Google Scholar 

  • Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Biotechnology, 5(3), 225–230.

    Article  Google Scholar 

  • Ogbo, E. M., & Okhuoya, J. A. (2008). Biodegradation of aliphatic, aromatic, resinic and asphaltic fractions of crude oil contaminated soils by Pleurotus tuber-regium Fr. Singer—a white rot fungus. African Journal of Biotechnology, 7(23), 4291–4297.

    CAS  Google Scholar 

  • Oliveira, L. S. (2004). Influência do solo contaminado com petróleo na morfologia e fisiologia em Schinus terebinthifolius Raddi (Anacardiaceae). Curitiba: Universidade Federal do Paraná, UFPR. Master of Science.

    Google Scholar 

  • Patin, S. A. (1982). Pollution and biological resources of the oceans. London: Butterworth Scientific.

    Google Scholar 

  • Pires, F. R., Souza, C. M., Silva, A. A., Procópio, S. O., & Ferreira, L. R. (2003). Seleção de plantas com potencial para fitorremediação de tebuthiuron. Planta Daninha, 21, 451–458.

    Google Scholar 

  • Silva, M. A., & Souza, R. (2005). Biodegradação de resíduos agrícolas como alternativa à redução de riscos ambientais no semi-árido Sergipano. Universidade Federal do Sergipe–SE. Master of Science.

  • Silva, I. S., Santos, E. C., Menezes, C. R., Faria, A. F., Franciscon, E., Grossman, M., & Durrant, L. R. (2009). Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia. Bioresource Technology, 100(20), 4669–4675.

    Article  CAS  Google Scholar 

  • Standard Methods. (1997). 5520 for oil and grease, 20th edn.

  • Tonini, R. M. C. W., Rezende, C. E., & Grativol, A. D. (2010). Degradação e biorremediação de compostos do petróleo por bactérias: Revisão. Oecologia Australis, 14(4), 1025–1035.

    Article  Google Scholar 

  • United States Environmental Protection Agency (EPA). (1995). Integrated risk information system (IRIS). Cincinnati: Office of Research and Development, US EPA.

    Google Scholar 

  • Vandecasteele, B., Du Laing, G., Quataert, P., & Tack, F. M. G. (2005). Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments. The Science of the Total Environment, 34, 251–263.

    Article  Google Scholar 

  • Vandecasteele, B., Meers, E., Vervaeke, P., Vos, B. D., Quataert, P., & Tack, F. M. G. (2005). Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere, 58, 995–1002.

    Article  CAS  Google Scholar 

  • Vandecasteele, B., Quataert, P., & Tack, F. M. G. (2005). The effect of hydrological regime on the metal bioavailability for the wetland plant species Salix cinerea. Environmental Pollution, 135, 303–312.

    Article  CAS  Google Scholar 

  • Vervaeke, P., Tack, F.M.G., Lust, N., Verloo, M.G. (2002). Effects of the Salix root system on metal extractability in contaminated sediment. In: Rhizosphere, preferential flow and bio-availability: A holistic view of soil-to-plant transfer, Centro Stefano Franscini, Ascona, Switzerland, pp. 136–142.

Download references

Acknowledgments

The authors express thanks to the Petrobras Company for their financial support to research. Special thanks go to the Petrobras/CENPES Management of Biotechnology and Environmental Treatment for their technological support to research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Borba da Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cunha, A.C.B., Sabedot, S., Sampaio, C.H. et al. Salix rubens and Salix triandra Species as Phytoremediators of Soil Contaminated with Petroleum-Derived Hydrocarbons. Water Air Soil Pollut 223, 4723–4731 (2012). https://doi.org/10.1007/s11270-012-1228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1228-z

Keywords

Navigation