Skip to main content
Log in

Water Quality Characterization in the Northern Florida Everglades

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

An Erratum to this article was published on 05 June 2012

Abstract

The Loxahatchee National Wildlife Refuge (Refuge) developed as a system with waters low in nutrients. Today, the Refuge wetlands are impacted by inflows containing elevated nutrient concentrations originating from agricultural sources flowing into canals surrounding the west side and from urban and horticultural areas flowing into canals surrounding the eastern side of the Refuge. We analyzed water quality sampled at 40 sites divided into eastern and western areas and four zones in the Refuge. We defined four zones as the canals surrounding the Refuge marsh, the perimeter zone, the transition zone, and the interior zone. The canal receiving agricultural inflows had greater alkalinity and conductivity (SpC), Si and SO4 but lower turbidity and total suspended solids than the canal receiving urban and horticultural inflows. Alkalinity, total dissolved solids (TDS), SpC, Ca, Cl, and SO4 concentrations were greater in the perimeter than in transition and interior zones. Alkalinity and SpC values and SO4 concentrations were greater in the transition than in interior zone. Alkalinity, SpC, and TDS values and Ca, SO4, and Cl concentrations correlated in negative curvilinear relationships with distance from the canal (r 2 = 0.78, 0.70, 0.61, 0.78, 0.64, 0.57, respectively). Analysis of multiple water quality parameters may reveal the complexity of interactions that might be overlooked in a simple single parameter analysis. These data show an impact of canal water containing high nutrient concentrations on water quality flowing from the canal towards the Refuge interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • APHA. (2005). Standard methods for the examination of water and wastewater. Washington: American Public Health Association, American Water Works Association, and Water Environment Federation.

    Google Scholar 

  • Asaeda, T., & Hung, L. Q. (2007). Internal heterogeneity of ramet and flower densities of Typha angustafolia near the boundary of a stand. Wetlands Ecology and Management, 15, 155–164.

    Article  Google Scholar 

  • Bates, A. L., Orem, W. H., Harvey, J. W., & Spiker, E. C. (2002). Tracing sources of sulfur in the Florida Everglades. Journal of Environmental Quality, 31, 287–299.

    Article  CAS  Google Scholar 

  • Busey, P. (2003). Cultural management of weeds in turfgrass: A review. Crop Science, 43, 1899–1911.

    Article  Google Scholar 

  • Chang, C. Y., McCormick, P. V., Newman, S., & Elliott, E. M. (2009). Isotopic indicators of environmental change in a subtropical wetland. Ecological Indicators, 9, 825–836.

    Article  Google Scholar 

  • Childers, D. L., Doren, R. F., Jones, R., Noe, G. B., Rugge, M., & Scinto, L. J. (2003). Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality, 32, 344–362.

    Article  CAS  Google Scholar 

  • Cooper, S. R., Huvane, J., Vaithyanathan, P., & Richardson, C. J. (1999). Calibration of diatoms along a nutrient gradient in Florida Everglades Water Conservation Area-2A. Journal of Paleolimnolology, 22, 413–437.

    Article  Google Scholar 

  • Corrales, J., Naja, G. M., Dziuba, C., Rivero, R. G., & Orem, W. (2010). Sulfate threshold target to control methylmercury levels in wetland ecosystems. Science of the Total Environment, 409, 2156–2162.

    Article  Google Scholar 

  • Crump, K. S., Kjellstrom, T., Shipp, A. M., Silvers, A., & Stewart, A. (1998). Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmark of a New Zealand cohort. Risk Analysis. 18,701–13.

  • Davis, S. M. (1994). Phosphorus inputs and vegetation sensitivity in the Everglades. In S. M. Davis & J. C. Ogden (Eds.), Everglades: The ecosystem and its restoration (pp. 357–378). Delray Beach: St Lucie Press.

    Google Scholar 

  • Davis, S. E., Coronado-Molina, C. L., Childers, D. L., & Day, J. W. (2003). Temporarily dependant C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades. Aquatic Botany, 75, 199–215.

    Article  CAS  Google Scholar 

  • DeBusk, W. F., Reddy, K. R., Koch, M. S., & Wang, Y. (1994). Spatial distribution of nutrients in a northern Everglades marsh: Water Conservation Area 2A. Soil Science Society of America Journal, 58, 543–552.

    Article  Google Scholar 

  • DeBusk, W. F., Newman, S., & Reddy, K. R. (2001). Spatio–temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A. Journal of Environmental Quality, 30, 1438–1446.

    Article  CAS  Google Scholar 

  • Doren, R. F., Armentano, T. V., Whiteaker, L. D., & Jones, R. D. (1997). Marsh vegetation patterns and soil phosphorus gradients in the Everglades ecosystem. Aquatic Botany, 56, 145–163.

    Article  CAS  Google Scholar 

  • Gaiser, E. E. (2009). Periphyton as an early indicator of restoration in the Florida Everglades. Ecological Indicators, 9s, 537–545.

    Google Scholar 

  • Gaiser, E. E., Scinto, L. J., Richards, J. H., Jayachandaran, K., Childers, D. L., Trexler, J. C., & Jones, R. D. (2004). Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment an oligotrophic wetland. Water Research, 38, 507–516.

    Article  CAS  Google Scholar 

  • Gaiser, E. E., Trexler, J. C., Richards, J. H., Childers, D. L., Lee, D., Edwards, A. L., Scinto, L. J., Jayachandaran, K., Noe, G. B., & Jones, R. D. (2005). Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality, 34, 717–723.

    Article  CAS  Google Scholar 

  • Gaiser, E. E., Childers, D. L., Jones, R. D., Richards, J. H., Scinto, L. J., & Trexler, J. C. (2006). Periphyton responses to eutrophication in the Florida Everglades: Cross-system patterns of structural and compositional change. Limnology and Oceanography, 50, 342–355.

    Google Scholar 

  • Glaz, B., & Gilbert, R. A. (2006). Sugarcane response to water table, periodic flood and foliar nitrogen on organic soil. Agronomy Journal, 98, 616–621.

    Article  CAS  Google Scholar 

  • Goss, R. L. (1974). Effects of variable rates of sulfur on the quality of putting green bentgrass. In E. C. Roberts (Ed.), Proceedings of the 2nd International Research Conference, Blacksburg, VA (pp. 172–175). Madison: ASA and CSSA.

    Google Scholar 

  • Hagerthey, S. E., Newman, S., Ruthey, K., Smith, E. K., & Godin, J. (2008). Multiple regime shifts in a subtropical peatland: Community-specific thresholds to eutrophication. Ecological Monographs, 78, 547–565.

    Article  Google Scholar 

  • Harmon, S. M., King, J. K., Gladden, J. B., & Newman, L. A. (2007). Using sulfate-amended sediment slurrybatch reactors to evaluate mercury methylation. Archives of Environmental Contamination and Toxicology, 52, 326–3231.

    Article  CAS  Google Scholar 

  • Harwell, M. C., Surratt, D. D., Barone, D. M., & Aumen, N. G. (2008). Spatial characterization of water quality in the northern Everglades—Examining water quality impacts from agricultural and urban runoff. Environmental Monitoring and Assessment, 142, 445–462.

    Article  Google Scholar 

  • Ivanoff, D., & Chen, H. (2012). Chapter 5: Performance and optimization of the Everglades Stormwater Treatment Areas. In: 2012 South Florida Environmental Report. 53 pp. Available at: http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2012_sfer_draft/chapters/v1_ch5.pdf.

  • Izuno, F. T., & Capone, L. T. (1995). Strategies for protecting Florida's Everglades: The best management practice approach. Water Science and Technology, 31, 123–131.

    Article  CAS  Google Scholar 

  • Jayachandran, K., & Shetty, K. (2003). Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquatic Botany, 76, 281–290.

    Article  CAS  Google Scholar 

  • Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands (p. 893). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Kang, W. J., & Trefry, J. H. (2003). Retrospective analysis of impacts of major hurricanes on sediments in the lower Everglades and Florida Bay. Evironmental Geology, 44, 771–780.

    Article  CAS  Google Scholar 

  • King, J. K., Kostka, J. E., Frischer, M. E., & Saunders, F. M. (2000). Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and marine sediments. Applied and Environmental Microbiology, 66, 2430–2437.

    Article  CAS  Google Scholar 

  • King, R. S., Richardson, C. J., Urban, D. L., & Romanowicz, E. A. (2004). Spatial dependency of vegetation-environment linkages in an anthropogenically influenced ecosystem. Ecosystems, 7, 75–97.

    Article  CAS  Google Scholar 

  • Kirk, R. E. (1995). Experimental design: Procedures for the behavioral sciences (2nd ed., p. 537). Belmont: Brooks Cole.

    Google Scholar 

  • Liston, S. E., & Trexler, J. C. (2005). Spatial and temporal scaling of macroinvertebrate communities inhabiting floating periphyton mats in the Florida Everglades. Journal of the North American Benthological Society, 24, 832–844.

    Article  Google Scholar 

  • Lorenzen, B., Brix, H., McKee, K. L., Mendelson, I. L., & Miao, S. L. (2000). Seed germination of two Everglades species: Cladium jamaicense and Typha domingensis. Aquatic Botany, 66, 169–180.

    Article  Google Scholar 

  • McCormick, P. V., & Laing, J. A. (2003). Effects of increased phosphorus loading on dissolved oxygen in a subtropical wetland, the Florida Everglades. Wetland Ecology and Management, 11, 199–216.

    Article  CAS  Google Scholar 

  • McCormick, P. V., & Stevenson, R. J. (1998). Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology, 34, 726–733.

    Article  Google Scholar 

  • McCormick, P. V., Rawlik, P. S., Lurding, K., Smith, E. P., & Sklar, F. H. (1996). Periphyton-water quality relationships along a nutrient gradient in the northern Florida Everglades. Journal of the North American Benthological Society, 15, 433–449.

    Article  Google Scholar 

  • McCormick, P. V., Newman, S., & Vilchek, L. W. (2009). Landscape responses to wetland eutrophication: Loss of slough habitat in the Florida Everglades, USA. Hydrobiologia, 621, 105–114.

    Article  CAS  Google Scholar 

  • Miao, S. L., Newman, S., & Sklar, F. H. (2000). Effects of habitat nutrients and seed sources on growth and expansion of Typha domingensis. Aquatic Botany, 68, 297–311.

    Article  Google Scholar 

  • Miao, S. L., McCormick, P. V., Newman, S., & Rajagopalan, S. (2001). Interactive effects of seed availability, water depth, and phosphorus enrichment on cattail colonization in an Everglades wetland. Wetlands Ecology and Management, 9, 39–47.

    Article  Google Scholar 

  • Miller, R.L., & McPherson, B.F. (2008). Water quality in the Arthur R. Marshall Loxahatchee National Wildlife Refuge—Trends and spatial characteristics of selected constituents, 1974-2004. USGS Scientific Investigations Report 2007-5277. USGS Reston, VA. Available at: http://www.usgs.gov.

  • Morris, D. R., Gilbert, R. A., Reicosky, D. C., & Gesh, R. W. (2004). Oxidation potentials of soil organic matter in Histosols under different tillage methods. Soil Science Society of America Journal, 68, 817–826.

    Article  CAS  Google Scholar 

  • Noe, G. B., Childers, D. L., & Jones, R. D. (2001). Phosphorus biogeochemistry and the impact of phosphorus enrichment: Why is the Everglades so unique. Ecosystems, 4, 603–624.

    Article  CAS  Google Scholar 

  • Noe, G. B., Scinto, L. J., Taylor, J., Childers, D., & Jones, R. D. (2003). Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshwater Biology, 48, 1993–2008.

    Article  CAS  Google Scholar 

  • Orem, W., Gilmour, C., Axelrad, D., Krabbenhoft, D., Scheidt, D., Kalla, P., McCormick, P., Gabriel, M., & Aiken, G. (2011). Sulfur in the South Florida ecosystem: Distribution, sources, biogeochemistry, impacts, and management for restoration. Critical Reviews in Environmental Science and Technology, 41, 249–288.

    Article  CAS  Google Scholar 

  • Pan, Y., Stevenson, J., Vaithyanathan, P., Slate, J., & Richardson, C. J. (2000). Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, U.S.A. Freshwater Biology, 44, 339–353.

    Article  Google Scholar 

  • Rehage, J. S., & Trexler, J. C. (2006). Assessing the net effect of anthropogenic disturbance on aquatic communities in wetlands: Community structure relative to distance from canals. Hydrobiologia, 569, 359–373.

    Article  Google Scholar 

  • Richardson, J.R., Bryant, W.L., Kitchens, W.M., Mattson, J.E., & Pope. K.R. (1990). An evaluation of refuge habitats and relationships to water quality, quantity, and hydroperiod: A synthesis report available at http://mwaldon.com/Loxahatchee/GrayLiterature/Richardson-1990.pdf, Florida Cooperative Fish and Wildlife Research Unit. University of Florida Press. Gainesville, FL.

  • SAS Institute Inc. (1999). SAS User's Guide: Statistics, Version 8.01 Edition (p. 584). Cary, NC: Statistical Analysis System (SAS) Institute Inc.

    Google Scholar 

  • Schaffeanek, R. W., & Jenter, H. J. (2001). Observations of daily temperatures patterns in the southern Florida Everglades. In D. F. Hayes (Ed.), ASCE Wetlands Engineering and River Restoration Conference. Reston: ASCE.

    Google Scholar 

  • Selin, N. E. (2009). Global biochemical cycling of mercury: A review, Annual Review of Environmental Resources. 34, 43–63.

  • SFWMD. (2006). Monitoring plan for Everglades protection area—Water Conservation Area 1 (WCA1) Project: EVPA. Version: 10 July, 2006. South Florida Water Management District, West Palm Beach, FL. 22 pp. Available at: http://www.sfwmd/gov/org/ema/toc/archives/2006_08_29/evpa_wca1monitoring_plan.pdf.

  • Sklar, F. H., Chimney, M. J., Newman, S., McCormick, P., Gawlik, D., Miao, S. L., McVoy, C., Said, W., Newman, J., Coronado, C., Crozier, G., Korvela, M., & Rutchey, K. (2005). The ecological–societal underpinnings of Everglades restoration. Frontiers in Ecology, 3, 161–169.

    Article  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1994). Statistical methods (7th ed., p. 354). Ames: Iowa State University Press.

    Google Scholar 

  • Stewart, H., Miao, S. L., Colbert, M., & Carraher, C. E., Jr. (1997). Seed germination of two cattail (Typha) species as a function of Everglades nutrient levels. Wetlands, 17, 116–122.

    Article  Google Scholar 

  • Surratt, D., Waldon, M. G., Harwell, M. C., & Aumen, N. G. (2008). Temporal and spatial trends of canal water intrusion into a northern Everglades marsh in Florida, USA. Wetlands, 28, 173–186.

    Article  Google Scholar 

  • Troxler, T. G., & Richards, J. H. (2009). 13C, δ15N, carbon, nitrogen and phosphorus as indicators of plant ecophysiology and organic matter pathways in Everglades deep slough, Florida, US. Aquatic Botany, 91, 157–165.

    Article  CAS  Google Scholar 

  • USFWS. (2007a). Arthur R. Marshall Loxahatchee National Wildlife Refuge—Enhanced Monitoring and Modeling Program Annual Report. LOX06-008, U.S. Fish and Wildlife Service., Boynton Beach, FL. 183. pp Available at: http://sofia.usgs.gov/lox_monitor_model/reports/.

  • USFWS. (2007b.) Arthur R. Marshall Loxahatchee National Wildlife Refuge - Enhanced Monitoring and Modeling Program Annual Report. LOX07-005, U.S. Fish and Wildife Service., Boynton Beach, FL. 183, pp available at: http://sofia.usgs.gov/lox_monitor_model/reports/.

  • Wang, H., Waldon, M. G., Meselhe, E., Arceneaux, J., Chen, C., & Harwell, M. C. (2009). Surface water sulfate dynamics in the Northern Florida Everglades, USA. Journal of Environmental Quality, 38, 734–741.

    Article  CAS  Google Scholar 

  • Ye, R., Wright, A. L., Orem, W. H., & McCray, J. M. (2010). Sulfur distribution and transformations in Everglades Agricultural Area soil as influenced by sulfur amendment. Soil Science, 175, 263–269.

    Article  CAS  Google Scholar 

  • Zhang, T., & Hsu-Kim, H. (2010). Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Natural Geoscience, 3, 437–476.

    Google Scholar 

  • Zhang, M., He, Z., Calvert, D. V., & Stoffella, P. J. (2004). Spatial and temporal variations of water quality in drainage ditches within vegetable farms and citrus groves. Agricultural Water Management, 65, 39–57.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Rebekah Gibble, Grant Gifford, Angie Markovich, Serena Rinker, Robert Smith, and Tiffany Trent for water quality sampling and collection; the SFWMD and Columbia Analytical Services for water chemistry analyses; SFWMD for access to DBHYDRO for database; Leslie MacGregor for GIS assistance; April Ostrem for checking all data; and Donatto Surratt for Fig. 1 and manuscript review. Funding was provided by the US Congress P.L. 108-108 and the Department of Interior Appropriations Act of 2004. The opinions expressed herein are those of the author and do not necessarily reflect those of the Department of Interior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Entry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Entry, J.A. Water Quality Characterization in the Northern Florida Everglades. Water Air Soil Pollut 223, 3237–3247 (2012). https://doi.org/10.1007/s11270-012-1105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1105-9

Keywords

Navigation