Skip to main content
Log in

Use of Biopolymeric Membranes for Adsorption of Paraquat Herbicide from Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The use of membranes prepared with alginate and chitosan to adsorb paraquat aqueous solution was evaluated as a potential alternative technique for remediation of contaminated water. Production of bilayer membranes was based on the electrostatic interaction between alginate (a polyanion) and chitosan (a polycation). Herbicide adsorption experiments were performed using three different membranes, consisting of pure alginate, pure chitosan, and a chitosan/alginate bilayer. Adsorption was characterized using the Langmuir and Freundlich isotherm models, as well as by applying pseudo-first order and pseudo-second order kinetic models. The potential use of the membranes in environmental applications was evaluated using water collected from the Sorocabinha River in São Paulo State, Brazil. The results indicated that interactions between the membranes and the herbicide were strongly related to the type of biopolymer and the physical–chemical characteristics of the herbicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alves, N. M., & Manoa, J. F. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 43, 401–414.

    Article  CAS  Google Scholar 

  • Aouada, F. A., Pan, Z., Orts, W. J., & Mattoso, L. H. C. (2009). Removal of paraquat pesticide from aqueous solutions using a novel adsorbent material based on polyacrylamide and methylcellulose hydrogels. Journal of Applied Polymer Science, 114, 2139–2148.

    Article  CAS  Google Scholar 

  • Baroni, P., Vieira, R. S., Meneghetti, E., Da Silva, M. G. C., & Beppu, M. M. (2008). Evaluation of batch adsorption of chromium ions on natural and crosslinked chitosan membranes. Journal of Hazardous Materials, 152, 1155–1163.

    Article  CAS  Google Scholar 

  • Beppu, M. M., Arruda, E. J., Vieira, R. S., & Santos, N. N. (2004). Adsorption of Cu(II) on porous chitosan membranes functionalized with histidine. Journal of Membrane Science, 240, 227–235.

    Article  CAS  Google Scholar 

  • Brigante, M., Zanini, G., & Avena, M. (2010). Effect of humic acids on the adsorption of paraquat by goethite. Journal of Hazardous Materials, 184, 241–247.

    Article  CAS  Google Scholar 

  • Dhaouadi, A., & Adhoum, N. (2009). Degradation of paraquat herbicide by electrochemical advanced oxidation methods. Journal of Electroanalytical Chemistry, 637, 33–34.

    Article  CAS  Google Scholar 

  • Dinis-Oliveira, R. J., Remião, F., Carmo, H., Duarte, J. A., Navarro, A. S., Bastos, M. L., & Carvalho, F. (2006). Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology, 27, 1110–1122.

    Article  CAS  Google Scholar 

  • Espevik, T., Otterlei, M., Skjak-Braek, G., Ryan, L., Wright, S. D., & Sundan, A. (1993). The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. European Journal of Immunology, 23, 255–261.

    Article  CAS  Google Scholar 

  • Foster, D. M., Rachwal, A. J., & White, S. L. (1991). New treatment processes for pesticides and chlorinated organics control in drinking water. Water and Environment Journal, 1, 466–477.

    Article  Google Scholar 

  • Giles, C. H., Macewan, T. H., Nakawa, S. H., & Smith, D. (1960). Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society, 3, 3973–3993.

    Google Scholar 

  • Hamadi, N. K., Swaminathan, S., & Chen, X. D. (2004). Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires. Journal of Hazardous Materials, B112, 133–141.

    Article  Google Scholar 

  • Ho, Y., & Ofomaja, A. E. (2006). Pseudo-second order model for lead ion sorption from aqueous solutions onto palm kernel fiber. Journal of Hazardous Materials, 129, 137–142.

    Article  CAS  Google Scholar 

  • Hsu, S. T., & Pan, T. C. (2007). Adsorption of paraquat using methacrylic acid-modified rice husk. Bioresource Technology, 98, 3617–3621.

    Article  CAS  Google Scholar 

  • Huang, R. Y. M., Pal, R., & Moon, G. Y. (1999). Crosslinked chitosan composite membrane for the pervaporation dehydration of alcohol mixtures and enhancement of structural stability of chitosan/polysulfone composite membranes. Journal of Membrane Science, 160, 17–30.

    Article  CAS  Google Scholar 

  • Ibánez, M., Picó, Y., & Manes, J. (1996). Influence of organic matter and surfactants on solid-phase extraction of diquat, paraquat and difenzoquat from waters. Journal of Chromatography. A, 727, 245–252.

    Article  Google Scholar 

  • Ibrahim, K. M., & Jbara, H. A. (2009). Removal of paraquat from synthetic wastewater using phillipsite–faujasite tuff from Jordan. Journal of Hazardous Materials, 163, 82–86.

    Article  CAS  Google Scholar 

  • Jeon, Y. S., Lei, J., & Kim, J. H. (2008). Dye adsorption characteristics of alginate/polyaspartate hydrogels. Journal of Industrial and Engineering Chemistry, 14, 726–731.

    Article  CAS  Google Scholar 

  • Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grndahl, L. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, 8, 2533–2541.

    Article  CAS  Google Scholar 

  • Lezcano, M., Al-Soufi, W., Novo, M., Rodríguez-Nunez, E., & Vásquez, J. (2002). Complexation of several benzimadazole type fungicides with α- and β-cyclodextrins. Journal of Agricultural and Food Chemistry, 50, 108–112.

    Article  CAS  Google Scholar 

  • Lim, S. F., Zheng, Y. M., Zou, S. W., & Chen, J. P. (2009). Removal of copper by calcium alginate encapsulated magnetic sorbent. Chemical Engineering Journal, 152, 509–513.

    Article  CAS  Google Scholar 

  • Limousin, G., Gaudet, J.-P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22, 249–275.

    Article  CAS  Google Scholar 

  • Martinsen, A. A., Skajak-Break, G., & Smidsrod, O. (1991). Comparison of different methods for determination of molecular weight and molecular weight distributions of alginates. Carbohydrate Polymers, 15, 171–193.

    Article  CAS  Google Scholar 

  • Moon, G. Y., Pal, R., & Huang, R. Y. M. (1999). Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol. Journal of Membrane Science, 156, 17–27.

    Article  Google Scholar 

  • Motwani, S. K., Chopra, S., Talegaonkar, S., Kohli, K., Ahmad, F. J., & Khar, R. K. (2008). Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimization and in vitro characterization. European Journal of Pharmaceutics and Biopharmaceutics, 68, 513–525.

    CAS  Google Scholar 

  • Nanseu-Njiki, C. P., Dedzo, G. K., & Ngameni, E. (2010). Study of the removal of paraquat from aqueous solution by biosorption onto Ayous (Triplochiton schleroxylon) sawdust. Journal of Hazardous Materials, 179, 63–71.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83, 1446–1456.

    Article  Google Scholar 

  • Núnez, O., Kim, J. B., Moyano, E., Galceram, M. T., & Terabe, S. (2002). Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection. Journal of Chromatography. A, 961, 65–75.

    Article  Google Scholar 

  • Nur, H., Abdul Manan, A. F. N., Wei, L. K., Muhid, M. N. M., & Hamdan, H. (2005). Simultaneous adsorption of a mixture of paraquat and dye by NaY zeolite covered with alkylsilane. Journal of Hazardous Materials, 117, 35–40.

    Article  CAS  Google Scholar 

  • Pateiro-Mourea, M., Arias-Estéveza, M., & Simal-Gándarab, J. (2010). Competitive and non-competitive adsorption/desorption of paraquat, diquat and difenzoquat in vineyard-devoted soils. Journal of Hazardous Materials, 178, 194–201.

    Article  Google Scholar 

  • Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid and Interface Science, 152, 2–13.

    Article  CAS  Google Scholar 

  • Prade, L., Huber, R., & Bieseler, B. (1998). Structures of herbicides in complex with their detoxifying enzyme glutathione S-transferase—Explanations for the selectivity of the enzyme in plants. Structure, 11, 1445–1452.

    Article  Google Scholar 

  • Qin, F., Wen, B., Shan, X. Q., Xie, Y. N., Liu, T., Zhang, S. Z., & Khan, S. U. (2006). Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. Environmental Pollution, 144, 669–680.

    Article  CAS  Google Scholar 

  • Radeva, T., Kamburova, K., & Petkanchin, I. (2006). Formation of polyelectrolyte multilayers from polysaccharides at low ionic strength. Journal of Colloid and Interface Science, 298, 59–65.

    Article  CAS  Google Scholar 

  • Recena, M. C. P., Caldas, E. D., Pires, D. X., & Pontes, E. R. J. C. (2006). Pesticides exposure in Culturama, Brazil—Knowledge, attitudes, and practices. Environmental Research, 102, 230–236.

    Article  CAS  Google Scholar 

  • Rytwo, G., Nir, S., Crespin, M., & Margulies, L. (2000). Adsorption and interactions of methyl green with montmorillonite and sepiolite. Journal of Colloid and Interface Science, 222(1), 12–19.

    Article  CAS  Google Scholar 

  • Seki, Y., & Yurdakoc, K. (2005). Paraquat adsorption onto clays and organoclays from aqueous solution. Journal of Colloid and Interface Science, 287, 1–5.

    Article  CAS  Google Scholar 

  • Silva, M. S., Cocenza, D. S., Grillo, R., Melo, N. F. S., Tonello, P. S., Oliveira, L. C., Cassimiro, D. L., Rosa, A. H., & Fraceto, L. F. (2011). Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials, 190, 366–374.

    Google Scholar 

  • Singh, B., Sharma, D. K., Kumar, R., & Gupta, A. (2010). Development of a new controlled pesticide delivery system based on neem leaf powder. Journal of Hazardous Materials, 177, 290–299.

    Article  CAS  Google Scholar 

  • Souza, D., & Machado, S. A. S. (2005). Electrochemical detection of the herbicide paraquat in natural water and citric fruit juices using microelectrodes. Analitica Chimica Acta, 546, 85–91.

    Article  Google Scholar 

  • Tonhi, E., & Plepis, A. M. G. (2002). Obtenção e caracterização de blendas colágenoquitosana. Química Nova, 25, 943.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Lai, C. W., & Hsein, K. J. (2004). Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth. Chemosphere, 55, 829–837.

    Article  CAS  Google Scholar 

  • USEPA (2010). United States Environmental Protection Agency. http://www.epa.gov/. Accessed March 2010.

  • Vidal, J. L. M., Veja, A. B., López, F. J. S., & Frenich, A. G. (2004). Application of internal quality control to the analysis of quaternary ammonium compounds in surface and groundwater from Andalusia (Spain) by liquid chromatography with mass spectrometry. Journal of Chromatography. A, 1050, 179–184.

    Article  Google Scholar 

  • Vieira, R. S., & Beppu, M. M. (2006). Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. Water Research, 40, 1726–1734.

    Article  CAS  Google Scholar 

  • Vieira, R. S., Guibal, E., Silva, E. A., & Beppu, M. M. (2007). Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes. Adsorption, 13, 603–611.

    Article  CAS  Google Scholar 

  • Villaverde, J., Morillo, E., & Maqueda, C. (2006). Effect of the simultaneous addition of alpha-cyclodextrin and the herbicide norflurazon on its adsorption and movement in soils. Journal of Agricultural and Food Chemistry, 54, 4766–4772.

    Article  CAS  Google Scholar 

  • Zhou, L., Wang, Y., Liua, Z., & Huang, Q. (2009). Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials, 161, 995–1002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Brazilian agencies FAPESP, CNPq (National Council for Scientific and Technological Development), and FUNDUNESP. We also thank Prof. Dr. André Henrique Rosa for provision of the river water sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Fernandes Fraceto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocenza, D.S., de Moraes, M.A., Beppu, M.M. et al. Use of Biopolymeric Membranes for Adsorption of Paraquat Herbicide from Water. Water Air Soil Pollut 223, 3093–3104 (2012). https://doi.org/10.1007/s11270-012-1092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1092-x

Keywords

Navigation