Skip to main content
Log in

Quantitative Assessment of Effects of Cadmium on the Histological Structure of Poplar and Willow Leaves

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Stem cuttings with homogenous diameter of Populus x euramericana (clone I-214) and Salix fragilis L. were grown in growth chamber in water culture method. After 45 days, the plants were treated with 10−7 and 10−5 M cadmium (Cd). As these species have different phytoextraction potentials, there is a need to analyze the level of Cd uptake, its translocation into aboveground organs, and changes in leaf structure. We analyzed micromorphological leaf characteristics: a fresh mass of the root, stem, and leaf, as well as a Cd concentration within them. Besides, we compared 23 micromorphological leaf blade quantitative traits of poplar and willow and monitored the structural changes induced by the intoxication of stem cuttings. Percent of Cd accumulation and translocation in plant organs varied between species. It depended on the level of Cd applied. When compared to the poplar clone, S. fragilis had a smaller leaf area and epidermal cells, thicker palisade tissue, smaller lumen of main vein vessels, and a higher percentage of main vein xylem. S. fragilis had more distinctive xeromorphic characteristics in the lamina structure. Increased concentrations of Cd led to significant structural changes, mainly in the main vein. When searching for valid parameters in assessing plant to be utilized in phytoremediation, it is necessary to take into consideration the interrelation of a large number of micromorphological parameters together with physiological and biochemical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ager, F. J., Ynsa, M. D., Dominguez-Solis, J. R., Gotor, C., Respaldiza, M. A., & Romero, L. C. (2002). Cd localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 189, 494–498. doi:10.1016/S0168-583X(01)01130-2.

    Article  CAS  Google Scholar 

  • Albrechtová, J., Janáček, J., Lhotáková, Z., Radochová, B., & Kubínová, L. (2007). Novel efficient methods for measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal microscopy: Application on acid rain-treated Norway spruce needles. Journal of Experimental Botany, 58(6), 1451–1461. doi:10.1093/jxb/erm007.

    Article  Google Scholar 

  • Almeida, A.-A. F., Valle, R. R., Mielke, M. S., & Gomes, F. P. (2007). Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Brazilian Journal of Plant Physiology, 19(2), 83–98. doi:10.1590/S1677-04202007000200001.

    Google Scholar 

  • Arduini, I., Godbold, D. L., & Onnis, A. (1996). Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiologia Plantarum, 97(1), 111–117. doi:10.1034/j.1399-3054.1996.970117.x.

    Article  CAS  Google Scholar 

  • Barceló, J., Poschenrieder, Ch, Andreu, I., & Gunsé, B. (1986). Cadmium induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. Cv. Contender). I. Effects of Cd on water potential, relative water content and cell wall elasticity. Journal of Plant Physiology, 125, 17–25.

    Article  Google Scholar 

  • Barceló, J., Vazquez, M. D., & Poschenrieder, C. (1988). Cadmium-induced structural and ultrastructural-changes in the vascular system of bush bean stems. Botanica Acta, 101, 254–261.

    Google Scholar 

  • Borišev, M., Pajević, S., Nikolić, N., Pilipović, A., Krstić, B., & Orlović, S. (2009). Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Polish Journal of Environmental Studies, 18(4), 553–561.

    Google Scholar 

  • Bowes, B. G. (1997). A colour atlas of plant structure. London: Manson.

    Google Scholar 

  • Bringezu, K., Lichtenberger, O., Leopold, I., & Neumann, D. (1999). Heavy metal tolerance of Silene vulgaris. Journal of Plant Physiology, 154, 536–546. doi:922,35400008412968.0190.

    Article  CAS  Google Scholar 

  • Cain, N. P., & Ormord, D. P. (1984). Hybrid vigor as indicated by early growth characteristics of Populus deltoides, P. nigra, and P. x euramericana. Canadian Journal of Botany, 62, 1–8.

    Article  Google Scholar 

  • Chardonnens, A. N., Ten Bookum, W. M., Kuijper, L. D. J., Verkleij, J. A. C., & Ernst, W. H. O. (1998). Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris. Physiologia Plantarum, 104(1), 75–80. doi:10.1034/j.1399-3054.1998.1040110.x.

    Article  CAS  Google Scholar 

  • Chaoui, A., & El Ferjani, E. (2005). Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Comptes Rendus Biologies, 328(1), 23–31. doi:10.1016/j.crvi.2004.10.001.

    Article  CAS  Google Scholar 

  • Choi, Y. E., Harada, E., Wada, M., Tsuboi, H., Morita, Y., Kusano, T., & Sano, H. (2001). Detoxification of cadmium in tobacco plants: Formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta, 213, 45–50. doi:10.1007/s004250000487.

    Article  CAS  Google Scholar 

  • Conn, S., & Gilliham, M. (2010). Comparative physiology of elemental distributions in plants. Annals of Botany, 105(7), 1081–1102. doi:10.1093/aob/mcq027.

    Article  CAS  Google Scholar 

  • Cosio, C., Vollenweider, P., & Keller, C. (2006). Localization and effects of cadmium in leaves of cadmium-tolerant willow (Salix viminalis L.) Part I. Microlocalization and phytotoxic effect of cadmium. Environmental and Experimental Botany, 58, 64–74. doi:10.1016/j.envexpbot.2005.06.017.

    Article  CAS  Google Scholar 

  • Dos Santos Utmazian, M. N., Wieshammer, G., Vega, R., & Wenzel, W. W. (2007). Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environmental Pollution, 148, 155–165. doi:10.1016/j.envpol.2006.10.045.

    Article  Google Scholar 

  • Esau, K. (1965). Plant anatomy (2nd ed.). New York: Wiley.

    Google Scholar 

  • Felix, H. (1997). Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants. Zeitschrift fur Pflanzenernahrung und Bondenkunde, 160, 525–529. doi:10.1002/jpln.19971600414.

    Article  CAS  Google Scholar 

  • Florijn, P. J., & Van Beusichem, M. (1993). Uptake and distribution of cadmium in maize inbred lines. Plant and Soil, 150(1), 25–32. doi:10.1007/BF00779172.

    Article  CAS  Google Scholar 

  • Fuhrer, J. (1982). Early effects of excess cadmium uptake in Phaseolus vulgaris. Plant Cell and Environment, 5(4), 263–270. doi:10.1111/1365-3040.ep11572648.

    CAS  Google Scholar 

  • Gàrate, A., Ramos, I., Manzanares, M., & Lucena, J. J. (1993). Cadmium uptake and distribution in three cultivars of Lactuca sp. Bulletin of Environmental Contamination and Toxicology, 50(5), 709–716.

    Article  Google Scholar 

  • Grant, C. A., Clarke, J. M., Duguid, S., & Chaney, R. L. (2008). Selection and breeding of plant cultivars to minimize cadmium accumulation. The Science of the Total Environment, 390(2–3), 301–310. doi:10.1016/j.scitotenv.2007.10.038.

    CAS  Google Scholar 

  • Gratão, P. L., Monteiro, C. C., Rossi, M. L., Martinelli, A. P., Peres, L. E. P., Medici, L. O., Lea, P. J., & Azevedo, R. A. (2009). Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium. Environmental and Experimental Botany, 67(2), 387–394. doi:10.1016/j.envexpbot.2009.06.017.

    Article  Google Scholar 

  • Greger, M. (2004). Metal availability, uptake, transport and accumulation in plants. In M. N. V. Prasad (Ed.), Heavy metal stress in plants—From Biomolecules to Ecosystems. Second ed (pp. 1–27). Heidelberg: Springer.

    Google Scholar 

  • Hammer, D., & Keller, C. (2002). Changes in the rhizosphere of heavy metal accumulating plants as evidenced by chemical extractants. Journal of Environmental Quality, 31(5), 1561–1569. doi:10.2134/jeq2002.1561.

    Article  CAS  Google Scholar 

  • Hammer, D., Kayser, A., & Keller, C. (2003). Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use and Management, 19, 187–192. doi:10.1079/SUM2002183.

    Google Scholar 

  • Hoagland, D. R., & Arnon, D. I. (1950). The water culture, method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–32.

    Google Scholar 

  • Jensen, J. K., Holm, P. E., Nejrup, J., Larsen, M. B., & Borggaard, O. K. (2009). The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environmental Pollution, 157(3), 931–937. doi:10.1016/j.envpol.2008.10.024.

    Article  CAS  Google Scholar 

  • Kacálková, L., Tlustoš, P., & Száková, J. (2009). Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant Soil and Environment, 55(7), 295–304.

    Google Scholar 

  • Kim, C. G., Bell, J. N. B., & Power, S. A. (2003). Effects of soil cadmium on Pinus silvestris L. seedlings. Plant and Soil, 257(2), 443–449. doi:10.1023/A:1027380507087.

    Article  CAS  Google Scholar 

  • Kovačević, G., Kastori, R., & Merkulov, Lj. (1999). Dry matter and leaf structure in young wheat plants as affected by cadmium, lead and nickel. Biologia Plantarum, 42(1), 119–123. doi:10.1023/A:1002135913249.

    Article  Google Scholar 

  • Kuriakose, S. V., & Prasad, M. N. V. (2008). Cadmium stress affects germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regulation, 54, 143–156. doi:10.1007/s10725-007-9237-4.

    Article  CAS  Google Scholar 

  • Kuzovkina, Y. A., Knee, M., & Quigley, M. F. (2004). Cadmium and copper uptake and translocation in five willow (Salix L.) species. International Journal of Phytoremediation, 6, 269–287. doi:10.1080/16226510490496726.

    Article  CAS  Google Scholar 

  • Lamoreaux, R. J., & Chaney, W. R. (1977). Growth and water movement in silver maple seedlings affected by cadmium. Journal of Environmental Quality, 6, 201–205. doi:10.2134/jeq1977.00472425000600020021x.

    Article  CAS  Google Scholar 

  • Landberg, T., & Greger, M. (1996). Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Applied Geochemistry, 11(1-2), 175–180. doi:10.1016/0883-2927(95)00082-8.

    Article  CAS  Google Scholar 

  • Landberg, T., & Greger, M. (2002). Differences in oxydative stress in heavy metals resistant and sensitives clones of Salix from unpolluted and polluted areas. Journal of Plant Physiology, 159(1), 69–75. doi:10.1078/0176-1617-00504.

    Article  CAS  Google Scholar 

  • Lhotáková, Z., Albrechtová, J., Janáček, J., & Kubínová, L. (2008). Advantages and pitfalls of using fee-hand section of frozen needles for three-dimensional analysis of mesophyll by stereology and confocal microscopy. Journal of Microscopy, 232, 56–63. doi:10.1111/j.1365-2818.2008.02079.x.

    Article  Google Scholar 

  • Lichtenberger, O., & Neumann, D. (1997). Analytical electron microscopy as a powerful tool in plant cell biology: Examples using electron energy loss spectroscopy and X-ray microanalysis. European Journal of Cell Biology, 73, 378–386.

    CAS  Google Scholar 

  • Liu, D., Jiang, W., & Gao, X. (2003). Effects of cadmium on root growth, cell division and nucleoli in root tip cells of garlic. Biologia Plantarum, 47(1), 79–83. doi:10.1023/A:1027384932338.

    Article  CAS  Google Scholar 

  • Lunáčková, L., Masarovicová, E., Kráová, K., & Stresko, V. (2003). Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bulletin of Environmental Contamination and Toxicology, 70, 576–585. doi:10.1007/s00128-003-0024-2.

    Article  Google Scholar 

  • Lunáčková, L., Sottníková, A., Masarovicová, E., Lux, A., & Stresko, V. (2003). Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. Biologia Plantarum, 47(3), 403–411. doi:10.1023/B:BIOP.0000023884.54709.09.

    Article  Google Scholar 

  • Lux, A., Šottníková, A., Opatrná, J., & Greger, M. (2004). Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiologia Plantarum, 120, 537–545. doi:10.1111/j.0031-9317.2004.0275.x.

    Article  CAS  Google Scholar 

  • Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: A review. Journal of Experimental Botany, 62(1), 21–37. doi:10.1093/jxb/erq281.

    Article  CAS  Google Scholar 

  • Lux, A., Vaculík, M., Martinka, M., Lišková, D., Kulkarni, M. G., Wendy, A. S., & Van Staden, J. (2011). Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medical plant Merwilla plumbea. Annals of Botany, 107, 285–292. doi:10.1093/aob/mcq240.

    Article  CAS  Google Scholar 

  • Maksimović, I., Kastori, R., Krstić, L., & Luković, J. (2007). Steady presence of Cd and Ni affects young maize root anatomy and accumulation and distribution of essential metals. Biologia Plantarum, 51(3), 589–592. doi:10.1007/s10535-007-0129-2.

    Article  Google Scholar 

  • Miklós, E., & Erdei, L. (2000). Effect of cadmium on growth and ion transport of grapevine. Acta Horticulturae, 526, 229–233.

    Google Scholar 

  • Neumann, D., Zur Nieden, U., Lichtenberger, O., & Leopold, I. (1995). How does Armeria maritima tolerate high heavy metal concentrations? Journal of Plant Physiology, 146, 704–717. doi:922,35400005463717.0210.

    Article  CAS  Google Scholar 

  • Parkhurst, D. F. (1982). Stereological methods for measuring internal leaf structure variables. American Journal of Botany, 69(1), 31–39.

    Article  Google Scholar 

  • Pietrini, F., Zacchini, M., Iori, V., Pietrosanti, L., Ferretti, M., & Massacci, A. (2010). Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. Plant Biology, 12, 355–363. doi:10.1111/j.1438-8677.2009.00258.x.

    Article  CAS  Google Scholar 

  • Pilipović, A., Nikolić, N., Orlović, S., Petrović, N., & Krstić, B. (2005). Cadmium phytoextraction potential of poplar clones (Populus spp.). Zeitschrift für Naturforschung C, 60(3-4), 247–251.

    Google Scholar 

  • Prasad, M. N. V., & Freitas, H. M. O. (2003). Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3), 285–321. doi:10.2225/vol6-issue3-fulltext-6.

    Article  Google Scholar 

  • Reese, R. N., McCall, R. D., & Roberts, L. W. (1986). Cadmium-induced ultrastructural changes in suspension-cultured tobacco cells (Nicotiana tabacum L. Var. Xanthi). Environmental and Experimental Botany, 26(2), 169–173. doi:10.1016/0098-8472(86)90012-2.

    Article  CAS  Google Scholar 

  • Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S. R., & Clothier, B. E. (2000). Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant and Soil, 227(1–2), 301–306. doi:10.1023/A:1026515007319.

    Article  CAS  Google Scholar 

  • Rosselli, W., Keller, C., & Boshi, K. (2003). Phytoextraction capacity of trees growing on a metal contaminated soil. Plant and Soil, 256, 265–272. doi:10.1023/A:1026100707797.

    Article  CAS  Google Scholar 

  • Salt, D., Prince, R. C., Pickering, I. J., & Raskin, I. (1995). Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109, 1427–1433. doi:10.1104/pp.109.4.1427.

    CAS  Google Scholar 

  • Sanitá di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41(2), 105–130. doi:10.1016/S0098-8472(98)00058-6.

    Article  Google Scholar 

  • Schwitzguébel, J. P., Kumpiene, J., Comino, E., & Vanek, T. (2009). From green to clean: a promising and sustainable approach towards environmental remediation and human health for the 21st century. Agrochimica, 53, 209–237.

    Google Scholar 

  • Sela, M., Tel-Or, E., Fritz, E., & Hutterman, A. (1988). Localization and toxic effects of cadmium, copper, and uranium in Azolla. Plant Physiology, 88, 30–36. doi:0032-0889/88/88/0030/07/$01.00/0.

    Article  CAS  Google Scholar 

  • Seregin, I. V., Shpigun, L. K., & Ivanov, V. B. (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51(4), 525–533. doi:10.1023/B:RUPP.0000035747.42399.84.

    Article  CAS  Google Scholar 

  • Seregin, I. V., & Kozhevnikova, A. D. (2008). Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russian Journal of Plant Physiology, 55, 1–22. doi:10.1134/S1021443708010019.

    Article  CAS  Google Scholar 

  • Souza, V. L., de Almeida, A. A. F., Lima, G. C. S., Cascardo, J. C. M., Silva, C. D., Mangabeira, A. O. P., & Gomes, P. F. (2011). Morphophysiological responses and programmed cell death induced by cadmium in Genipa americana L. (Rubiaceae). Biometals, 24, 59–71. doi:10.1007/s10534-010-9374-5.

    Article  CAS  Google Scholar 

  • Sridhar, B. B. M., Diehl, S. V., Han, F. X., Monts, D. L., & Su, Y. (2005). Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environmental and Experimental Botany, 54(2), 131–141. doi:10.1016/j.envexpbot.2004.06.011.

    Article  Google Scholar 

  • Stoltz, E., & Greger, M. (2002). Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 47(3), 271–280. doi:10.1016/S0098-8472(02)00002-3.

    Article  CAS  Google Scholar 

  • Vandecasteele, B., De Vos, B., & Tack, F. M. G. (2002). Cadmium and zinc uptake by volunteer willow species and elder rooting in polluted dredged sediment disposal sites. The Science of The Total Environment, 299, 191–205. doi:10.1016/S0048-9697(02)00275-9.

    Article  CAS  Google Scholar 

  • Vandecasteele, B., Meers, E., Vervaeke, P., De Vos, B., Quataert, P., & Tack, F. M. G. (2005). Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere, 58, 995–1002. doi:10.1016/j.chemosphere.2004.09.062.

    Article  CAS  Google Scholar 

  • Vitória, A. P., Rodriguez, A. P. M., Cunha, M., Lea, P. J., & Azevedo, R. A. (2003). Structural changes in radish seedlings exposed to cadmium. Biologia Plantarum, 47(4), 561–568. doi:10.1023/B:BIOP.0000041062.00539.7a.

    Article  Google Scholar 

  • Vollenweider, P., Cosio, C., Günthardt-Goerg, M. S., & Keller, C. (2006). Localization and effects of cadmium in leaves of a tolerant Salix viminalis L. Part II. Microlocalization and cellular effect of cadmium. Environmental and Experimental Botany, 58, 25–40. doi:10.1016/j.envexpbot.2005.06.012.

    Article  CAS  Google Scholar 

  • Vysloužilová, M., Tlustoš, P., & Száková, J. (2003). Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil and Environment, 49, 542–547.

    Google Scholar 

  • Wang, M., Zou, J., Duan, X., Jiang, W., & Liu, D. (2007). Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresource Technology, 98(1), 82–88. doi:10.1016/j.biortech.2005.11.028.

    Article  CAS  Google Scholar 

  • Watson, C., Pulford, D., & Riddell-Black, D. (2003). Screening of willow species for resistance to heavy metals: Comparison of performance in a hydroponics system and field trials. International Journal of Phytoremediation, 5(4), 351–365. doi:10.1080/16226510390268748.

    CAS  Google Scholar 

  • Wolf, L. (1954). Mikroskopická tehnika. Státni zdravotnické nakladatelstvi, Praha, (in Czech)

  • Youn-Joo, A. (2004). Soil ecotoxicity assessment using cadmium sensitive plants. Environmental Pollution, 127(1), 21–26. doi:10.1016/S0269-7491(03)00263-X.

    Article  Google Scholar 

  • Zacchini, M., Pietrini, F., Mugnozza, S. G., Iori, V., Pietrosanti, L., & Massacci, A. (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air and Soil Pollution, 197, 23–34. doi:10.1007/s11270-008-9788-7.

    Article  CAS  Google Scholar 

  • Zorić, L., Luković, J., Matić-Kekić, S., Merkulov, Lj. (2011). Modified stereological method for analysis of compound leaves and an example of its application. Journal of Biological Systems, 19(4), 617–627. doi:10.1142/S0218339011004019.

Download references

Acknowledgments

A research presented in this paper was supported by the Ministry of Education and Science, Republic of Serbia, grant no. OI-173002 and III-043007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Luković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luković, J., Merkulov, L., Pajević, S. et al. Quantitative Assessment of Effects of Cadmium on the Histological Structure of Poplar and Willow Leaves. Water Air Soil Pollut 223, 2979–2993 (2012). https://doi.org/10.1007/s11270-012-1081-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1081-0

Keywords

Navigation