Skip to main content
Log in

Mono- and Multielement Sorption of Trace Metals on Oxidic Industrial By-products

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Assessing multielement adsorption of trace metals on materials having potential to be used as soil amendments is an essential stage for the remediation success, as soil contamination rarely occurs with a single element. This study evaluated mono-/multielement adsorption of Zn, Cu, Cd, and Pb on aluminum (AMB) and iron mining by-products (IMB, used for comparison). Prior to adsorption, these products were characterized by X-ray diffraction, isoelectric point, infrared spectroscopy, scanning electron microscopy, and microwave furnace digestion. Sorption experiments comprised: (1) pH adjustment (5.5, 6.5, and natural suspension pH), (2) mono- and multielement adsorption, and (3) desorption. Rising pH from 5.5 to natural suspension values (9.5) increased monoelement adsorption of Zn, Cu, Cd, and Pb on AMB up to 3.8-, 1.4-, 6.2-, and 1.1-fold, whereas multielement adsorption was increased up to 17.3-, 2.0-, 20.3-, and 1.2-fold, respectively. Zinc and Cd were less adsorbed than Cu and Pb and more affected by competition. Multielement adsorption at 5.5 pH in AMB resulted in smaller adsorption of Zn (up to 4.6-fold), Cu (1.4-fold), Cd (3.3-fold), and Pb (1.1-fold) when compared with monoelement adsorption. The lower the pH, the smaller the adsorption and the higher the desorption. The AMB showed higher capacity to maintain the elements adsorbed than the IMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abollino, O., Giacomino, A., Malandrino, M., & Mentasti, E. (2008). Interation of metal ions with montmorillonite and vermiculite. Applied Clay Science, 38(3–4), 227–236.

    Article  CAS  Google Scholar 

  • Barrow, N. J. (1989). The reaction of plant nutrients and pollutants with soils. Australian Journal of Soil Research, 27(3), 475–492.

    Article  CAS  Google Scholar 

  • Bertocchi, A. F., Ghiani, M., Peretti, R., & Zucca, A. (2006). Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. Journal of Hazardous Materials, 134(1–3), 112–119.

    Article  CAS  Google Scholar 

  • Bradl, B. H. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1), 1–18.

    Article  CAS  Google Scholar 

  • BRASIL (2006). Instrução Normativa nº 27, de 5 de junho de 2006. Ministério da Agricultura, Pecuária e Abastecimento. http://extranet.agricultura.gov.br/sislegis-consulta/consultarLegislacao.do?operacao=visualizar&id=16951. Accessed 17 Dec 2010.

  • Castaldi, P., Santona, L., Enzo, S., & Melis, P. (2008). Sorption processes and XRD analysis of a natural zeolite exchanged with Pb2+, Cd2+ and Zn2+ cations. Journal of Hazardous Materials, 156(1–3), 428–434.

    Article  CAS  Google Scholar 

  • Ciccu, R., Ghiani, M., Serci, A., Fadda, S., Peretti, R., & Zucca, A. (2003). Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Minerals Engineering, 16(3), 187–192.

    Article  CAS  Google Scholar 

  • Cornell, R. M., & Schwertmann, U. (2003). The iron oxides (3rd ed.). Weinheim: Wiley.

    Book  Google Scholar 

  • Costa, E. T. S., Guilherme, L. R. G., Curi, N., Oliveira, L. C. A., Visioli, E. L., & Lopes, G. (2008). Subproduto da indústria de alumínio como amenizante de solos contaminados com cádmio e chumbo. Revista Brasileira de Ciência do Solo, 32(6), 2533–2546.

    Article  CAS  Google Scholar 

  • Costa, E. T. S., Guilherme, L. R. G., Curi, N., Lopes, G., Visioli, E. L., & Oliveira, L. C. A. (2009). Caracterização de subproduto da indústria de alumínio e seu uso na retenção de cádmio e chumbo em sistemas monoelementares. Química Nova, 32(4), 868–874.

    Article  CAS  Google Scholar 

  • Feng, X. H., Zhai, L. M., Tan, W. F., Liu, F., & He, J. Z. (2007). Adsorption and redox reactions of heavy metals on synthesized Mn oxide mineral. Environmental Pollution, 147(2), 366–373.

    Article  CAS  Google Scholar 

  • Ferreira, D. F. (2009). SISVAR, Sistema de análise de variância, Ver. 5.1, Universidade Federal de Lavras, Departamento de Ciências Exatas, Lavras. http://www.dex.ufla.br/~danielff/softwares.htm. Accessed 20 Dec 2011.

  • Fontes, M. P. F., & Gomes, P. C. (2003). Simultaneous competitive adsorption of heavy metals by mineral matrix of tropical soils. Applied Geochemistry, 18(6), 795–804.

    Article  CAS  Google Scholar 

  • Friesl, W., Friedl, J., Platzer, K., Hork, O., & Gerzabek, M. H. (2006). Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: batch, pot and field experiments. Environmental Pollution, 144(1), 40–50.

    Article  CAS  Google Scholar 

  • Frost, R. L., Kloprogge, J. T., Russel, S. C., & Szetu, J. (1999). Vibrational spectroscopy and dehydroxylation of aluminum (oxo)hydroxides: gibbsite. Applied Spectroscopy, 53(4), 423–434.

    Article  CAS  Google Scholar 

  • Gray, C. W., Dunham, S. J., Dennis, P. G., Zhao, F. J., & McGrath, S. P. (2006). Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red mud. Environmental Pollution, 142(3), 530–539.

    Article  CAS  Google Scholar 

  • Gupta, V. K., & Sharma, S. (2002). Removal of cadmium and zinc from aqueous solutions using red mud. Environmental Science & Technology, 36(16), 3612–3617.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2010). Visual Minteq, ver. 2.53. KTH, Kungliga Tekniska Högskolgn, Royal Institute of Technology. Department of Land and Water Resources Engineering. Stockholm. http://www.lwr.kth.se/English/OurSoftware/vminteq/. Accessed 20 Dec 2010.

  • Jodin, M. C., Gaboriaud, F., & Humbert, B. (2005). Limitations of potentiometric studies to determine the surface charge of gibbsite γ–Al(OH)3 particles. Journal of Colloid and Interface Science, 287(2), 581–591.

    Article  CAS  Google Scholar 

  • Juang, R. S., & Chung, J. Y. (2004). Equilibrium sorption of heavy metal and phosphate from single- and binary-sorbate solutions on goethite. Journal of Colloid and Interface Science, 275(1), 53–60.

    Article  CAS  Google Scholar 

  • Kloprogge, J. T., Ruan, H. D., & Frost, R. L. (2002). Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. Journal of Materials Science, 37(6), 1121–1129.

    Article  CAS  Google Scholar 

  • Lide, D. R. (2000). CRC Handbook of chemistry and physics (80th ed.). Boca Raton: CRC Press. CD-ROM.

    Google Scholar 

  • Martins, F. M., Martins, J. M., Ferracin, L. C., & Cunha, C. J. (2007). Mineral phases of green liquor dregs, slaker grits, lime mud and wood ash of a Kraft pulp and paper mill. Journal of Hazardous Materials, 147(1), 610–617.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University.

    Google Scholar 

  • Oliveira, L. C. A., Gonçalves, M., Oliveira, D. Q. L., & Guarieiro, A. L. N. (2007). Síntese e propriedades catalíticas em reações de oxidação de goethitas contendo nióbio. Química Nova, 30(4), 925–929.

    Article  CAS  Google Scholar 

  • Pierangeli, M. A. P., Guilherme, L. R. G., Curi, N., Silva, M. L. N., Oliveira, L. R., & Lima, J. M. (2001a). Efeito do pH na adsorção-dessorção de chumbo em Latossolos brasileiros. Revista Brasileira de Ciência do Solo, 25(2), 269–277.

    CAS  Google Scholar 

  • Pierangeli, M. A. P., Guilherme, L. R. G., Oliveira, L. R., Curi, N., & Silva, M. L. N. (2001b). Efeito da força iônica da solução de equilíbrio sobre a adsorção/dessorção de chumbo em Latossolos brasileiros. Pesquisa Agropecuária Brasileira, 36(8), 1077–1084.

    Article  Google Scholar 

  • Pierangeli, M. A. P., Guilherme, L. R. G., Oliveira, L. R., Curi, N., & Silva, M. L. N. (2003). Efeito da força iônica da solução de equilíbrio na adsorção de cádmio em Latossolos brasileiros. Pesquisa Agropecuária Brasileira, 38(6), 737–745.

    Article  Google Scholar 

  • Pierangeli, M. A. P., Guilherme, L. R. G., Curi, N., Silva, M. L. N., Lima, J. M., & Costa, E. T. S. (2005). Efeito do pH na adsorção e dessorção de cádmio em Latossolos brasileiros. Revista Brasileira de Ciência do Solo, 29(4), 523–532.

    Article  CAS  Google Scholar 

  • Pierangeli, M. A. P., Guilherme, L. R. G., Curi, N., Costa, E. T. S., Lima, J. M., Marques, J. J. G. S. M., et al. (2007). Comportamento sortivo individual e competitivo, de metais pesados em Latossolos com mineralogia contrastante. Revista Brasileira de Ciência do Solo, 31(4), 819–826.

    Article  CAS  Google Scholar 

  • Pokrovsky, O. S., Viers, J., & Freydier, R. (2005). Zinc stable isotope fractionation during its adsorption in oxides and hydroxides. Journal of Colloid and Interface Science, 291(1), 192–200.

    Article  CAS  Google Scholar 

  • Pozza, A. A. A., Curi, N., Guilherme, L. R. G., Marques, J. J. G. S. M., Costa, E. T. S., Zuliane, D. Q., et al. (2009). Adsorção e dessorção aniônica individuais por gibbsita pedogenética. Química Nova, 32(1), 99–105.

    Article  CAS  Google Scholar 

  • Prado, A. G. S., Faria, E. A., & Padilha, P. M. (2005). Aplicação e modificação química da sílica gel obtida da areia. Química Nova, 28(3), 544–547.

    Article  CAS  Google Scholar 

  • Serna, C. L., White, J. L., & Hem, S. L. (1977). Anion–aluminum hydroxide gel interactions. Journal Soil Science Society of America, 41(5), 1009–1013.

    Article  CAS  Google Scholar 

  • Smiciklas, I. D., Milonjic, S. K., Pfendt, P., & Raicevic, S. (2000). The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Separation and Purification Technology, 18(3), 185–194.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (2nd ed.). San Diego: Academic.

    Google Scholar 

  • Sprynskyy, M., Buszewski, B., Terzyk, A. P., & Namiesnik, J. (2006). Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304(1), 21–28.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2009). Competitive adsorption of cadmium (II) and nickel (II) metal ions from aqueous solution onto Rice husk ash. Chemical Engineering and Processing, 48(1), 370–379.

    Article  CAS  Google Scholar 

  • Tan, K. H. (1992). Principles of soil chemistry (2nd ed.). New York: Marcel Dekker.

    Google Scholar 

  • USEPA. (1998). United States Environmental Protection Agency Method 3051A, Microwave assisted acid digestion of sediments, sludges, soils, and oils. In SW-846, Test methods for evaluating solid waste, physical/chemical methods (pp. 1–20). Washington DC: Environmental Protection Agency.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Programa Nacional de Pós-Doutorado and Fundação de Amparo a Pesquisa do Estado de Minas Gerais for sponsoring part of the project and for granting scholarships to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enio Tarso de Souza Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza Costa, E.T., Guilherme, L.R.G., Lopes, G. et al. Mono- and Multielement Sorption of Trace Metals on Oxidic Industrial By-products. Water Air Soil Pollut 223, 1661–1670 (2012). https://doi.org/10.1007/s11270-011-0973-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0973-8

Keywords

Navigation