Skip to main content
Log in

Development of a Sequential Decision-Making Model for Controlling Multiple Air Pollutants Under Stochastic Uncertainty

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Most of previous programming methods for air-quality management merely considered single pollutant from point sources. However, air pollution control is characterized by multiple pollutants from various sources. Meanwhile, uncertain information in the decision-making process cannot be neglected in the real-world cases. Thus, an inexact multistage stochastic programming model with joint chance constraints based on the air quality index (air-quality management model with joint chance constraints (AQM-JCC)) is developed for controlling multiple pollutants deriving from point and mobile sources and applied to a regional air-quality management system. In the model, integrated air quality associated with the joint probability existing in terms of environmental constraints is evaluated; uncertainties expressed as probability distributions and interval values are addressed; risks of violating the overall air-quality target under joint chance constraints are examined; and dynamics of system uncertainties and decision processes under a complete set of scenarios within a multistage context are reflected. The results indicate that useful solutions for air quality management practices in sequential stochastic decision environments have been generated, which can help decision makers to identify cost-effective control strategies for overall air quality improvement under uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An, H. H., & Eheart, J. W. (2007). A screening technique for joint chance-constrained programming for air-quality management. Operations Research, 55(4), 792–798.

    Article  Google Scholar 

  • Birge, J. R. (1985). Decomposition and Partitioning Methods for Multistage Stochastic Linear-programs. Operations Research, 33(5), 989–1007.

    Article  Google Scholar 

  • Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. New York: Springer.

    Google Scholar 

  • Carslaw, D. C., & Beevers, S. D. (2005). Estimations of road vehicle primary NO2 exhaust emission fractions using monitoring data in London. Atmospheric Environment, 39(1), 167–177. doi:10.1016/j.atmosenv.2004.08.053.

    Article  CAS  Google Scholar 

  • Chan, C. K., & Yao, X. (2008). Air pollution in mega cities in China. Atmospheric Environment, 42(1), 1–42. doi:10.1016/j.atmosenv.2007.09.003.

    Article  CAS  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1983). Response to " Decision problems under risk and chance constrained programming: dilemmas in the transition". Management Science, 29(6), 750–753.

    Article  Google Scholar 

  • Cheng, S. Y., Li, J. B., Feng, B., Jin, Y. Q., & Hao, R. X. (2007a). A Gaussian-box modeling approach for urban air quality management in a northern Chinese city - I. model development. Water Air and Soil Pollution, 178(1–4), 37–57. doi:10.1007/s11270-006-9120-3.

    Article  CAS  Google Scholar 

  • Cheng, S. Y., Li, J. B., Feng, B., Jin, Y. Q., & Hao, R. X. (2007b). A Gaussian-box modeling approach for urban air quality management in a Northern Chinese City - II. pollutant emission abatement. Water Air and Soil Pollution, 178(1–4), 15–36. doi:10.1007/s11270-006-9119-9.

    Article  CAS  Google Scholar 

  • Cheng, W. L., Chen, Y. S., Zhang, J. F., Lyons, T. J., Pai, J. L., & Chang, S. H. (2007c). Comparison of the revised air quality index with the PSI and AQI indices. Science of the Total Environment, 382(2–3), 191–198. doi:10.1016/j.scitotenv.2007.04.036.

    Article  CAS  Google Scholar 

  • CMEP. (1991). Technical guidelines for regional ambient air quality standard (in Chinese). Beijing, China: Ministry of Environmental Protection.

    Google Scholar 

  • CMEP. (1993). Technical guidelines for environmental impact assessment: atmospheric environment (in Chinese). Beijing, China: Ministry of Environmental Protection.

    Google Scholar 

  • CMEP. (2006). China Environmental Yearbook (in Chinese). Beijing, China: Ministry of Environmental Protection, China Environmental Science.

    Google Scholar 

  • CMEP. (2007). China Environmental Yearbook (in Chinese). Beijing, China: Ministry of Environmental Protection, China Environmental Science.

    Google Scholar 

  • CMEP. (2008). China Environmental Yearbook (in Chinese). Beijing, China: Ministry of Environmental Protection, China Environmental Science.

    Google Scholar 

  • Cohan, D. S., Boylan, J. W., Marmur, A., & Khan, M. N. (2007). An integrated framework for multipollutant air quality management and its application in georgia. Environmental Management, 40, 545–554. doi:10.1007/s00267-006-0228-4.

    Article  Google Scholar 

  • Cooper, W. W., Hemphill, H., Huang, Z., Li, S., Lelas, V., & Sullivan, D. W. (1997). Survey of mathematical programming models in air pollution management. European Journal of Operational Research, 96(1), 1–35.

    Article  Google Scholar 

  • Corvo, F., Reyes, J., Valdes, C., Villasenor, F., Cuesta, O., Aguilar, D., et al. (2010). Influence of Air Pollution and Humidity on Limestone Materials Degradation in Historical Buildings Located in Cities Under Tropical Coastal Climates. Water Air and Soil Pollution, 205(1–4), 359–375. doi:10.1007/s11270-009-0081-1.

    Article  CAS  Google Scholar 

  • Cyrys, J., Hochadel, M., Gehring, U., Hoek, G., Diegmann, V., Brunekreef, B., et al. (2005). GIS-based estimation of exposure to particulate matter and NO2 in an urban area: Stochastic versus dispersion modeling. Environmental Health Perspectives, 113(8), 987–992. doi:10.1289/ehp.7662.

    Article  CAS  Google Scholar 

  • Ellis, J. H., McBean, E. A., & Farquhar, G. J. (1986). Chance-constrained/stochastic linear programming model for acid rain abatement—II. Limited colinearity. Atmospheric Environment, 20(3), 501–511.

    Article  Google Scholar 

  • Fang, M., Chan, C. K., & Yao, X. H. (2009). Managing air quality in a rapidly developing nation: China. Atmospheric Environment, 43(1), 79–86. doi:10.1016/j.atmosenv.2008.09.064.

    Article  CAS  Google Scholar 

  • Guo, H., Zhang, Q. Y., Shi, Y., & Wang, D. H. (2007). Evaluation of the International Vehicle Emission (IVE) model with on-road remote sensing measurements. Journal of Environmental Sciences (China), 19(7), 818–826.

    Article  CAS  Google Scholar 

  • Gurjar, B. R., Butler, T. M., Lawrence, M. G., & Lelieveld, J. (2008). Evaluation of emissions and air quality in megacities. Atmospheric Environment, 42, 1593–1606.

    Article  CAS  Google Scholar 

  • Hamekoski, K. (1998). The use of a simple air quality index in the Helsinki area, Finland. Environmental Management, 22(4), 517–520.

    Article  Google Scholar 

  • Hao, J. M., & Wang, L. T. (2005). Improving urban air quality in China: Beijing case study. Journal of the Air and Waste Management Association, 55(9), 1298–1305.

    CAS  Google Scholar 

  • Huang, G. H. (1996). IPWM: An interval paramerter water quality management model. Engineering Optimization, 26(2), 79–103.

    Article  Google Scholar 

  • Huang, G. H. (1998). A hybrid inexact-stochastic water management model. European Journal of Operational Research, 107(1), 137–158.

    Article  Google Scholar 

  • Huang, G. H., & Loucks, D. P. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering and Environmental Systems, 17(2), 95–118.

    Article  Google Scholar 

  • Huang, G. H., Baetz, B. W., & Patry, G. G. (1992). A grey linear programming approach for municipal soild waste management planning under uncertainty. Civil Engineering Systems, 9(4), 319–335.

    Article  CAS  Google Scholar 

  • Huang, Q., Cheng, S. Y., Li, Y. P., Li, J. B., Chen, D. S., & Wang, H. Y. (2010). An Integrated MM5-CAMx Modeling Approach for Assessing PM10 Contribution from Different Sources in Beijing, China. Journal of Environmental Informatics, 15(2), 47–61. doi:10.3808/jei.201000166.

    Google Scholar 

  • Jagannat, R. (1974). Chance-constrained programming with joint constraints. Operations Research, 22(2), 358–372.

    Article  Google Scholar 

  • Jiang, D., Zhang, Y., Hu, X., Zeng, Y., Tan, J., & Shao, D. (2004). Progress in developing an ANN model for air pollution index forecast. Atmospheric Environment, 38(40), 7055–7064.

    Article  CAS  Google Scholar 

  • Kenneth, W., Warner, C., & Davis, W. (1998). Air pollution, its origin and control (Third Ediction). New York: Addison Wesley.

    Google Scholar 

  • Kuhns, H. D., Mazzoleni, C., Moosmueller, H., Nikolic, D., Keislar, R. E., Barber, P. W., et al. (2004). Remote sensing of PM, NO, CO and HC emission factors for on-road gasoline and diesel engine vehicles in Las Vegas, NV. Science of the Total Environment, 322(1–3), 123–137.

    Article  CAS  Google Scholar 

  • Kyrkilis, G., Chaloulakou, A., & Kassomenos, P. A. (2007). Development of an aggregate Air Quality Index for an urban Mediterranean agglomeration: Relation to potential health effects. Environment International, 33(5), 670–676. doi:10.1016/j.envint.2007.01.010.

    Article  CAS  Google Scholar 

  • Lei, Y., Zhang, Q., Nielsen, C., & He, K. (2011). An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990–2020. Atmospheric Environment, 45, 147–154.

    Article  CAS  Google Scholar 

  • Lejeune, M. A., & Prekopa, A. (2005). Approximations for and convexity of probabilistic constrained problems with random right-hand sides. RRR-Rutcor Research Report, 17.

  • Leksmono, N. S., Longhurst, J. W. S., Ling, K. A., Chatterton, T. J., Fisher, B. E. A., & Irwin, J. G. (2006). Assessment of the relationship between industrial and traffic sources contributing to air quality objective exceedences: a theoretical modelling exercise. Environmental Modelling and Software, 21(4), 494–500.

    Article  Google Scholar 

  • Li, Y. P., & Huang, G. H. (2009). Interval-parameter robust optimization for environmental management under uncertainty. Canadian Journal of Civil Engineering, 36(4), 592–606.

    Article  Google Scholar 

  • Li, Y. P., & Huang, G. H. (2010). Inexact joint-probabilistic stochastic programming for water resources management under uncertainty. Engineering Optimization, 42(11), 1023–1037. doi:10.1080/03052151003622539.

    Article  Google Scholar 

  • Li, Y. P., Huang, G. H., Veawab, A., Nie, X., & Liu, L. (2006). Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management. Journal of the Air and Waste Management Association, 56(8), 1070–1082.

    CAS  Google Scholar 

  • Li, Y. P., Huang, G. H., Nie, S. L., & Qin, X. S. (2007). ITCLP: An inexact two-stage chance-constrained program for planning waste management systems. Resources, Conservation and Recycling, 49(3), 284–307.

    Article  Google Scholar 

  • Li, Y. P., Huang, G. H., Nie, X. H., & Nie, S. L. (2008). An inexact fuzzy-robust two-stage programming model for managing sulfur dioxide abatement under uncertainty. Environmental Modeling and Assessment, 13(1), 77–91. doi:10.1007/s10666-006-9077-z.

    Article  Google Scholar 

  • Li, Y. P., Huang, G. H., & Nie, S. L. (2009). Water resources management and planning under uncertainty: an inexact multistage joint-probabilistic programming method. Water Resources Management, 23(12), 2515–2538.

    Article  Google Scholar 

  • Li, Y. P., Huang, G. H., Yang, Z. F., & Chen, X. (2009). Inexact fuzzy-stochastic constraint-softened programming-A case study for waste management. Waste Management, 29(7), 2165–2177.

    Article  CAS  Google Scholar 

  • Liu, L., Huang, G. H., Liu, Y., Fuller, G. A., & Zeng, G. M. (2003). A fuzzy-stochastic robust programming model for reginal air quality management under uncertainty. Engineering Optimization, 35(2), 177–199.

    Article  CAS  Google Scholar 

  • Liu, Z. F., Huang, G. H., Liao, R. F., & He, L. (2009). DIPIT: Dual Interval Probabilistic Integer Programming for Solid Waste Management. Journal of Environmental Informatics, 14(1), 66–73. doi:10.3808/jei.200900154.

    Article  Google Scholar 

  • Lu, H., Huang, G. H., Liu, L., & He, L. (2008). An interval-parameter fuzzy-stochastic programming approach for air quality management under uncertainty. Environmental Engineering Science, 25(6), 895–910.

    Article  CAS  Google Scholar 

  • Lu, H. W., Huang, G. H., & He, L. (2010). A Two-Phase Optimization Model Based on Inexact Air Dispersion Simulation for Regional Air Quality Control. [Article]. Water Air and Soil Pollution, 211(1–4), 121–134. doi:10.1007/s11270-009-0286-3.

    Article  CAS  Google Scholar 

  • Lv, Y., Huang, G. H., Li, Y. P., Yang, Z. F., & Li, C. H. (2009). Interval-Based Air Quality Index Optimization Model for Regional Environmental Management Under Uncertainty. Environmental Engineering Science, 26(11), 1585–1597.

    Article  CAS  Google Scholar 

  • Lv, Y., Huang, G. H., Li, Y. P., Yang, Z. F., & Sun, W. (2011). A two-stage inexact joint-probabilistic programming method for air quality management under uncertainty. Journal of Environmental Management, 92(3), 813–826. doi:10.1016/j.jenvman.2010.10.027.

    Article  CAS  Google Scholar 

  • Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33(24–25), 4029–4037.

    Article  CAS  Google Scholar 

  • Mayer, H., Holst, J., Schindler, D., & Ahrens, D. (2008). Evolution of the air pollution in SW Germany evaluated by the long-term air quality index LAQx. Atmospheric Environment, 42(20), 5071–5078. doi:10.1016/j.atmosenv.2008.02.020.

    Article  CAS  Google Scholar 

  • Miller, B. L., & Wagner, H. M. (1965). Chance constrained programming with joint constraints. Operations Research, 13(6), 930–945.

    Article  Google Scholar 

  • Mohan, M., & Kandya, A. (2007). An analysis of the annual and seasonal trends of air quality index of Delhi. Environmental Monitoring and Assessment, 131(1–3), 267–277. doi:10.1007/s10661-006-9474-4.

    Article  CAS  Google Scholar 

  • Murena, F. (2004). Measuring air quality over large urban areas: development and application of an air pollution index at the urban area of Naples. Atmospheric Environment, 38(36), 6195–6202. doi:10.1016/j.atmosenv.2004.07.023.

    Article  CAS  Google Scholar 

  • Özden, Ö., Döğeroğlu, T., & Kara, S. (2008). Assessment of ambient air quality in Eskisehir, Turkey. Environment International, 34(5), 678–687. doi:10.1016/j.envint.2007.12.016.

    Article  Google Scholar 

  • Qin, X. S., Huang, G. H., & Liu, L. (2010). A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty. Journal of the Air and Waste Management Association, 60(1), 63.

    Article  CAS  Google Scholar 

  • Qu, W. J., Arimoto, R., Zhang, X. Y., Zhao, C. H., Wang, Y. Q., Sheng, L. F., et al. (2010). Spatial distribution and interannual variation of surface PM10 concentrations over eighty-six Chinese cities. Atmospheric Chemistry and Physics, 10(12), 5641–5662. doi:10.5194/acp-10-5641-2010.

    Article  CAS  Google Scholar 

  • Siddique, S., Banerjee, M., Ray, M. R., & Lahiri, T. (2010). Air Pollution and its Impact on Lung Function of Children in Delhi, the Capital City of India. Water Air and Soil Pollution, 212(1–4), 89–100. doi:10.1007/s11270-010-0324-1.

    Article  CAS  Google Scholar 

  • Sinha, S. B., Hulsurkar, S., & Biswal, M. P. (2000). Fuzzy programming approach to multi-objective stochastic programming problems when b(i)’s follow joint normal distribution. Fuzzy Sets and Systems, 109(1), 91–96.

    Article  Google Scholar 

  • Stieb, D., Doiron, M. S., Blagden, P., & Burnett, R. (2005). Estimating the public health burden attributable to air pollution: An illustration using the development of an alternative air quality index. Journal of Toxicology and Environmental Health-Part A, 68(13), 1275–1288.

    Article  CAS  Google Scholar 

  • Sun, W., & Huang, G. H. (2010). Inexact Piecewise Quadratic Programming for Waste Flow Allocation under Uncertainty and Nonlinearity. Journal of Environmental Informatics, 16(2), 80–93. doi:10.3808/jei.201000180.

    Article  CAS  Google Scholar 

  • Tennakoon, M., Mayorga, R. V., & Shirif, E. (2010). A Fuzzy Inference System Prototype for Indoor Air and Temperature Quality Monitoring and Hazard Detection. Journal of Environmental Informatics, 16(2), 70–79. doi:10.3808/jei.201000179.

    Article  Google Scholar 

  • Trozzi, C., Vaccaro, R., & Crocetti, S. (1999). Air quality index and its use in Italy’s management plans. The Science of the Total Environment, 235(1–3), 387–389.

    CAS  Google Scholar 

  • USEPA. (1999). Guideline for reporting of daily air quality—air quality index (AQI). Washington DC: USEPA. USEPA-454/R-99-010.

    Google Scholar 

  • Wang, X. K., & Lu, W. Z. (2006). Seasonal variation of air pollution index: Hong Kong case study. Chemosphere, 63(8), 1261–1272.

    Article  CAS  Google Scholar 

  • Wang, L. H., & Milford, J. B. (2001). Reliability of optimal control strategies for photochemical air pollution. Environmental Science and Technology, 35(6), 1173–1180.

    Article  CAS  Google Scholar 

  • Wang, T. J., Jiang, F., Li, S., & Liu, Q. (2007). Trends in air pollution during 1996–2003 and cross-border transport in city clusters over the Yangtze River Delta region of China. Terrestrial Atmospheric and Oceanic Sciences, 18(5), 995–1009. doi:10.3319/tao.2007.18.5.995(a).

    Article  Google Scholar 

  • Watanabe, T., & Ellis, H. (1994). A joint chance-constrained programming model with row dependence. European Journal of Operational Research, 77(2), 325–343.

    Article  Google Scholar 

  • Yan, X. P., Ma, X. F., Huang, G. H., & Wu, C. Z. (2010). An Inexact Transportation Planning Model for Supporting Vehicle Emissions Management. Journal of Environmental Informatics, 15(2), 87–98. doi:10.3808/jei.201000169.

    Google Scholar 

  • Ying, G. X., Ma, J., & Xing, Y. (2007). Comparison of air quality management strategies of PM10, SO2, and NOx, by an industrial source complex model in Beijing. Environmental Progress, 26(1), 33–42. doi:10.1002/ep.10182.

    Article  CAS  Google Scholar 

  • Zhang, Y., Monder, D., & Fraser Forbes, J. (2002). Real-time optimization under parametric uncertainty: a probability constrained approach. Journal of Process Control, 12(3), 373–389.

    Article  CAS  Google Scholar 

  • Zolezzi, T. (2001). Well-posedness and optimization under perturbations. Annals of Operations Research, 101, 351–361.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07104-004), and the Natural Sciences and Engineering Research Council of Canada. The authors thank the anonymous reviewers for their comments and suggestions that helped in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohe Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, Y., Huang, G., Li, Y. et al. Development of a Sequential Decision-Making Model for Controlling Multiple Air Pollutants Under Stochastic Uncertainty. Water Air Soil Pollut 223, 443–465 (2012). https://doi.org/10.1007/s11270-011-0872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0872-z

Keywords

Navigation