Skip to main content

Dynamic Programming-Based Decision-Making Model for Selecting Optimal Air Pollution Control Technologies for an Urban Setting

  • Conference paper
  • First Online:
Smart Cities—Opportunities and Challenges

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 58))

Abstract

Increasing population, rapid urbanization and hasty industrialization are assisting gradual shift in human residence from rural to urban. Any city trying to become a smart and sustainable one must provide a better quality of life for its citizens and address the problem of degrading air quality and increasing pollutant emissions. The solution for these problems requires selection and decision-making among a number of candidate emission-control-alternatives that need to satiate a number of technical constraints, policy criteria and regulations. For a given pollutant and emission source, a number of control technologies are available; hence, it is coveted to choose the best combination among them to reduce emissions to a desired standard. Because of its applicability, flexibility and ease of computation in solving large-scale practical problems, dynamic programming-based approach appears to be the appropriate and feasible choice for optimal air pollution control technology selection for an urban metropolitan area. Current study develops a dynamic programming (DP) model that determines the optimal selection strategy, after defining different parameters, at a minimized total cost. The usage and applicability of the proposed model were illustrated with a representative case study of a simulated city with three major sources of pollution. It is inferred that DP is ideal for the ‘multiple sources—multiple control technologies—single air pollutant’ optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams R (1975) Optimization models for regional air pollution control. In: Mathematical analysis of decision problems in ecology. Springer, Berlin, Heidelberg, pp 116–6. https://doi.org/10.1007/978-3-642-80924-8_5

  2. Amini AA, Weymouth TE, Jain RC (1990) Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Mach Intell 9:855–867. https://doi.org/10.1109/34.57681

    Article  Google Scholar 

  3. Asif Z, Chen Z (2018) Optimization of air pollution control model for mining. Int J Civil Environ Eng 12(4):411–417. https://publications.waset.org/10008805/optimization-of-air-pollution-control-model-for-mining

    Google Scholar 

  4. Bellman RE, Dreyfus SE (1962) Applied dynamic programming. Princeton University Press, Princeton

    Book  Google Scholar 

  5. Bellman RE, Dreyfus SE (2015) Applied dynamic programming, vol 2050. Princeton University Press, Princeton

    Google Scholar 

  6. Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, Williams PB et al (2004) Health effects of air pollution. J Allergy Clin Immunol 114(5):1116–1123. https://doi.org/10.1016/j.jaci.2004.08.030

  7. Bertsekas DP, Bertsekas DP, Bertsekas DP, Bertsekas DP (1995) Dynamic programming and optimal control, vol 1, No. 2. Athena Scientific, Belmont

    Google Scholar 

  8. Bhaskar BV, Mehta VM (2010) Atmospheric particulate pollutants and their relationship with meteorology in Ahmedabad. Aerosol Air Qual Res 10(4):301–315. https://doi.org/10.4209/aaqr.2009.10.0069

    Article  Google Scholar 

  9. Bradley SP, Hax AC, Magnanti TL (1977) Dynamic programming. In: Applied mathematical programming [E-reader version], pp 320–362. Retrieved from http://web.mit.edu/15.053/www/AMP-Chapter-11.pdf

  10. Caines PE (2018) Linear stochastic systems, vol 77. SIAM

    Google Scholar 

  11. Chauhan C (2007) Urbanisation in India faster than rest of the world. Hindustan Times, Retrieved from https://www.hindustantimes.com/india/urbanisation-in-india-faster-than-rest-of-the-world/story-IdmQ4BSqxEZe874AprzfnL.html

  12. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Feigin V et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015. Lancet 389(10082):1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6

  13. Cooper L, Cooper MW (2016) Introduction to dynamic programming: international series in modern applied mathematics and computer science. vol 1. Elsevier

    Google Scholar 

  14. Council on Environmental Quality (1977) Environmental quality: the eighth annual report of the council on environmental quality. U.S. Government Printing Office, Washington, D.C, p. 172. Retrieved from https://babel.hathitrust.org/cgi/pt?id=mdp.39015000421662;view=1up;seq=4

  15. Craig KJ, De Kock DJ, Snyman JA (1999) Using CFD and mathematical optimization to investigate air pollution due to stacks. Int J Numer Meth Eng 44(4):551–565. https://doi.org/10.1002/(SICI)1097-0207(19990210)44:4<551::AID-NME519>3.0.CO;2-7

    Article  Google Scholar 

  16. Curtis L, Rea W, Smith-Willis P, Fenyves E, Pan Y (2006) Adverse health effects of outdoor air pollutants. Environ Int 32(6):815–830. https://doi.org/10.1016/j.envint.2006.03.012

    Article  Google Scholar 

  17. Dreyfus S (2002) Richard Bellman on the birth of dynamic programming. Oper Res 50(1):48–51. https://doi.org/10.1287/opre.50.1.48.17791

    Article  MathSciNet  Google Scholar 

  18. Environmental Cooperation Office, Global Environment Bureau, Ministry of Environment, Japan (1998) Air pollution control technology manual (Copyright 2005). Retrieved from https://www.env.go.jp/earth/coop/coop/document/01-apctme/contents.html

  19. Galil Z, Park K (1992) Dynamic programming with convexity, concavity and sparsity. Theoret Comput Sci 92(1):49–76. https://doi.org/10.1016/0304-3975(92)90135-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Goswami E, Larson T, Lumley T, Liu LJS (2002) Spatial characteristics of fine particulate matter: identifying representative monitoring locations in Seattle, Washington. J Air Waste Manag Assoc 52(3):324–333. https://doi.org/10.1080/10473289.2002.10470778

  21. Goswami P, Baruah J (2011) Urban air pollution: process identification, impact analysis and evaluation of forecast potential. Meteorol Atmos Phys 110(3–4):103–122. https://doi.org/10.1007/s00703-010-0105-9

    Article  Google Scholar 

  22. Goyal P, Sidhartha (2003) Present scenario of air quality in Delhi: a case study of CNG implementation. Atmos Environ 37(38):5423–5431. https://doi.org/10.1016/j.atmosenv.2003.09.005

    Article  Google Scholar 

  23. Guttikunda SK, Gurjar BR (2012) Role of meteorology in seasonality of air pollution in megacity Delhi, India. Environ Monit Assess 184(5):3199–3211. https://doi.org/10.1007/s10661-011-2182-8

    Article  Google Scholar 

  24. Guttikunda SK, Nishadh KA, Gota S, Singh P, Chanda A, Jawahar P, Asundi J (2019) Air quality, emissions, and source contributions analysis for the Greater Bengaluru region of India. Atmos Pollut Res 10(3):941–953. https://doi.org/10.1016/j.apr.2019.01.002

  25. Haith DA (1982) Environmental systems optimization, p 115

    Google Scholar 

  26. He YJ, Chen DZ (2008) Hybrid particle swarm optimization algorithm for mixed-integer nonlinear programming. J Zhejiang Univ (Eng Sci) 42(5):747–751. https://doi.org/10.3785/j.issn.1008-973X.2008.05.005

    MATH  Google Scholar 

  27. Howard DB, Thé J, Soria R, Fann N, Schaeffer R, Saphores JDM (2019) Health benefits and control costs of tightening particulate matter emissions standards for coal power plants-the case of Northeast Brazil. Environ Int 124:420–430. https://doi.org/10.1016/j.envint.2019.01.029

    Article  Google Scholar 

  28. Huan L, Kebin H (2012) Traffic optimization: a new way for air pollution control in China’s urban areas. https://doi.org/10.1021/es301778b

  29. Jiang Y, Jiang ZP (2015) Global adaptive dynamic programming for continuous-time nonlinear systems. IEEE Trans Autom Control 60(11):2917–2929. https://doi.org/10.1109/TAC.2015.2414811

    Article  MathSciNet  MATH  Google Scholar 

  30. Kafkes A (2017) Demystifying dynamic programming. Retrieved from https://medium.freecodecamp.org/demystifying-dynamic-programming-3efafb8d4296

  31. Kanada M, Fujita T, Fujii M, Ohnishi S (2013) The long-term impacts of air pollution control policy: historical links between municipal actions and industrial energy efficiency in Kawasaki City, Japan. J Clean Prod 58:92–101. https://doi.org/10.1016/j.jclepro.2013.04.015

    Article  Google Scholar 

  32. Kanaroglou PS, Jerrett M, Morrison J, Beckerman B, Arain MA, Gilbert NL, Brook JR (2005) Establishing an air pollution monitoring network for intra-urban population exposure assessment: a location-allocation approach. Atmos Environ 35t, 39(13):2399–2409. https://doi.org/10.1016/j.atmosenv.2004.06.049

  33. Kelman J, Stedinger JR, Cooper LA, Hsu E, Yuan SQ (1990) Sampling stochastic dynamic programming applied to reservoir operation. Water Resour Res 26(3):447–454. https://doi.org/10.1029/WR026i003p00447

    Article  Google Scholar 

  34. Kondili E (2005) Review of optimization models in the pollution prevention and control. In: Computer aided chemical engineering, vol 20. Elsevier, pp 1627–1632. https://doi.org/10.1016/S1570-7946(05)80113-0

  35. Kukkonen J, Härkönen J, Karppinen A, Pohjola M, Pietarila H, Koskentalo T (2001) A semi-empirical model for urban PM10 concentrations, and its evaluation against data from an urban measurement network. Atmos Environ 35(26):4433–4442. https://doi.org/10.1016/S1352-2310(01)00254-0

    Article  Google Scholar 

  36. Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Di Sabatino S, Britter R et al (2015) The rise of low-cost sensing for managing air pollution in cities. Environ Int 75:199–205. https://doi.org/10.1016/j.envint.2014.11.019

  37. Kumar R, Joseph AE (2006) Air pollution concentrations of PM2.5, PM10 and NO2 at ambient and kerbsite and their correlation in Metro City–Mumbai. Environ Monit Assess 119(1–3):191–199. https://doi.org/10.1007/s10661-005-9022-7

  38. Landrigan PJ (2017) Air pollution and health. Lancet Public Health 2(1):e4–e5. https://doi.org/10.1016/S2468-2667(16)30023-8

    Article  Google Scholar 

  39. Lebret E, Briggs D, Van Reeuwijk H, Fischer P, Smallbone K, Harssema H, Elliott P et al (2000). Small area variations in ambient NO2 concentrations in four European areas. Atmos Environ 34(2):177–185. https://doi.org/10.1016/S1352-2310(99)00292-7

  40. Mabahwi NAB, Leh OLH, Omar D (2014) Human health and wellbeing: Human health effect of air pollution. Procedia-Soc Behav Sci 153:221–229. https://doi.org/10.1016/j.sbspro.2014.10.056

    Article  Google Scholar 

  41. Owoade KO, Hopke PK, Olise FS, Ogundele LT, Fawole OG, Olaniyi BH, Bashiru MI et al (2015) Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria. Atmos Pollut Res 6(1):107–119. https://doi.org/10.5094/APR.2015.013

  42. Parvin M, Grammas GW (1976) Optimization models for environmental pollution control: a synthesis. J Environ Econ Manage 3(2):113–128. https://doi.org/10.1016/0095-0696(76)90026-7

    Article  MATH  Google Scholar 

  43. Plumlee GS, Ziegler TL (1999) Environmental geochemistry. Treatise on Geochemistry

    Google Scholar 

  44. Poor HV (1984) Backward forward and backward-forward dynamic programming models under commutativity conditions. In: Proceedings of 23rd IEEE conference decision control, pp 1081–1086. https://doi.org/10.1109/CDC.1984.272179

  45. Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality, vol 703. Wiley

    Google Scholar 

  46. Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming. Wiley, New York

    Google Scholar 

  47. Ross SM (2014) Introduction to stochastic dynamic programming. Academic Press

    Google Scholar 

  48. Rust J (1997) Using randomization to break the curse of dimensionality. Econometrica: J Econometric Soc, 487–516. https://doi.org/10.2307/2171751

  49. Sakawa M, Sawaragi Y (1975) Multiple-criteria optimization of pollution control model. Int J Syst Sci 6(8):741–748. https://doi.org/10.1080/00207727508941858

    Article  MathSciNet  MATH  Google Scholar 

  50. Schnelle KB Jr, Dunn RF, Ternes ME (2015) Air pollution control technology handbook. CRC Press

    Google Scholar 

  51. Shaban HI, Elkamel A, Gharbi R (1997) An optimization model for air pollution control decision making. Environ Model Softw 12(1):51–58. https://doi.org/10.1016/S1364-8152(96)00008-4

    Article  Google Scholar 

  52. Shao M, Tang X, Zhang Y, Li W (2006) City clusters in China: air and surface water pollution. Front Ecol Environ 4(7):353–361. https://doi.org/10.1890/1540-9295(2006)004[0353:CCICAA]2.0.CO;2

    Article  Google Scholar 

  53. Showalter WE, Halpin DW (2008) Dynamic programming approach to optimization of site remediation. J Constr Eng Manage 3(10):820–827. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:10(820)

    Article  Google Scholar 

  54. Shukla K, Srivastava PK, Banerjee T, Aneja VP (2017) Trend and variability of atmospheric ozone over middle Indo-Gangetic Plain: impacts of seasonality and precursor gases. Environ Sci Pollut Res 24(1):164–179. https://doi.org/10.1007/s11356-016-7738-2

    Article  Google Scholar 

  55. Si J, Barto AG, Powell WB, Wunsch D (eds) (2004) Handbook of learning and approximate dynamic programming, vol 2. Wiley, New York

    Google Scholar 

  56. Trijonis JC, Peng TK, McRae GJ, Lees L (1976) Emissions and air quality trends in the South Coast Air Basin. Retrieved from https://authors.library.caltech.edu/25765/

  57. United Nations (2018) 2018 Revision of world urbanization prospects. Retrieved from https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html

  58. Wang KM (1981) Optimization of an air pollution control model by linear programming. J Chin Inst Eng 4(1):1–11. https://doi.org/10.1080/02533839.1981.9676662

    Article  Google Scholar 

  59. White DJ (1969) Dynamic programming, vol 1. Oliver & Boyd, Edinburgh

    MATH  Google Scholar 

  60. World Health Organization (WHO), Department of Public Health, Environmental and Social Determinants of Health (PHE) (2014) Healthy environments, Healthy People (Press Release). Retrieved from https://www.who.int/phe/eNews_63.pdf

  61. Yadav R, Sahu LK, Beig G, Jaaffrey SNA (2016) Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India. Atmos Res 176:96–107. https://doi.org/10.1016/j.atmosres.2016.02.018

    Article  Google Scholar 

  62. Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, Cohen A (2000) Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 108(5):419–426. https://doi.org/10.1289/ehp.00108419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shiva Kumar, G., Sharma, A., Shukla, K., Nema, A.K. (2020). Dynamic Programming-Based Decision-Making Model for Selecting Optimal Air Pollution Control Technologies for an Urban Setting. In: Ahmed, S., Abbas, S., Zia, H. (eds) Smart Cities—Opportunities and Challenges. Lecture Notes in Civil Engineering, vol 58. Springer, Singapore. https://doi.org/10.1007/978-981-15-2545-2_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2545-2_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2544-5

  • Online ISBN: 978-981-15-2545-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics