Skip to main content
Log in

Influence of Soil Granulometry on Pyrene Desorption in Groundwater Using Surfactants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) is the main limiting factor for the remediation of soils and aquifers. Surfactants are amphiphilic substances which encourage the transfer of hydrophobic compounds from the solid to the liquid phase. While the interaction between organic matter and surfactants has been widely studied, there is a lack of knowledge concerning the relationship between surfactant efficiency and the granulometry of soil and/or geologic material. In this paper, three non-ionic surfactants (Tween 80, Gold Crew, and BS-400) were used to study the desorption of pyrene, chosen as a representative PAH, in soils with different grain size proportions (1%, 5%, 10%, and 20% of clay and silt) and no organic matter (<0.1%). The best quantity of surfactant to apply is closely related to the proportion of fine materials. Tween 80 gave better maximum desorption than Gold Crew and BS-400 (89%, 40%, and 36%, respectively). As an important proportion of aquifers show fine material above 1%, the effective critical micellar concentration obtained when applying surfactants to this type of geologic materials has to be higher than 150 mg L−1 for Tween 80, and higher than 65 mg L−1, and 100 mg L−1 for Golf Crew and BS 400, respectively. Furthermore, results indicate that carrying out simple laboratory tests before the use of surfactants on a field scale is necessary to improve the efficiency and minimize the financial and environmental impact of its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biot, 80, 723–736.

    Article  CAS  Google Scholar 

  • Cheng, K. Y., & Wong, J. W. C. (2006). Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil–water system. Chemosphere, 62, 1907–1916.

    Article  CAS  Google Scholar 

  • Chu, W., & Chan, K. H. (2003). The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics. The Science of the Total Environment, 307, 83–92.

    Article  CAS  Google Scholar 

  • Duffield, A. R., Ramamurthy, R. S., & Campanelli, J. R. (2003). Surfactant enhanced mobilization of mineral oil within porous. Water, Air and Soil Pollution, 143, 111–122.

    Article  CAS  Google Scholar 

  • Edwards, D. A., Luthy, R., & Liu, Z. (1991). Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environmental Science & Technology, 25, 127–133.

    Article  CAS  Google Scholar 

  • Garon, D., Krivobok, S., Wouessidjew, D., & Seigle-Murandi, F. (2002). Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere, 47, 303–309.

    Article  CAS  Google Scholar 

  • Gonen, Y., & Rytwo, G. (2006). Using the dual-mode model to describe adsorption of organic pollutants onto an organoclay. Journal of Colloid and Interface Science, 299, 95–101.

    Article  CAS  Google Scholar 

  • Grinberg, S., Stringfellow, W., & Aitken, M. (1996). Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Applied and Environmental Microbiology, 62, 2387–2392.

    Google Scholar 

  • Gurein, W. F., & Jones, G. E. (1988). Mineralization of phenanthrene by Mycobacterium sp. Applied and Environmental Microbiology, 54, 937–944.

    Google Scholar 

  • Guha, P. R., Jaffe, C., & Peters, M. (1998). Solubilization of PAH mixtures by nonionic surfactant. Environmental Science & Technology, 32, 930–954.

    Article  CAS  Google Scholar 

  • Hwang, S., Ramirez, N., Cutright, T. J., & Ju, L.-K. (2003). The role of soil properties in pyrene sorption and desorption. Water, Air, and Soil Pollution. doi:10.1023/A:1022863015709.

    Google Scholar 

  • Jahan, K., Ahmed, T., & Maier, W. J. (1999). Modeling the influence of nonionic surfactants on biodegradation of phenanthrene. Water Research, 33, 2181–2193.

    Article  CAS  Google Scholar 

  • Jönsonn, B., Holmberg, K., & Kronberg, B. (1998). Surfactants and polymers in aqueous solution. Chichester: Wiley.

    Google Scholar 

  • Joshi, M. M., & Lee, S. (1996). Optimization of surfactant-aided remediation of industrially contaminated soils. Energy Sources, 18, 291–301.

    Article  CAS  Google Scholar 

  • Karichoff, S. W. (1984). Organic pollutant sorption in aquatic systems. Journal of Hydraulic Enginnering, 6, 707–735.

    Article  Google Scholar 

  • Kim, I. S., & Park, J. (2001). Enhanced biodegradation of polycylic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 16, 1519–1528.

    Google Scholar 

  • Laha, S., & Luthy, R. G. (1992). Inhibition of phenanthrene mineralization by nonionic surfactants in soil–water systems. Environmental Science & Technology, 25, 1290–1930.

    Google Scholar 

  • Laha, S., Tansel, B., & Ussawarujikulchai, A. (2009). Surfactant-soil interactions during surfactant-amended remediation of contaminated soils by hydrophobic organic compounds: a review. J Environ Mang, 90, 95–100.

    Article  CAS  Google Scholar 

  • Lippold, H., Gottschalch, U., & Kupsch, H. (2008). Joint influence of surfactants and humic matter on PAH solubility. Are mixed micelles formed? Chemosphere, 70, 1979–1986.

    Article  CAS  Google Scholar 

  • Martinez-Bofill, J., Corominas, J., Soler, A. (2008). Approach to the relationship between durability and petrological characteristics of weak rocks. In II European Conference of the International Association for Engineering Geology. EuroEnGeo. The City and its Subterranean Environment. Ed. AEGAIN Asociación Española de Geología Aplicada a la Ingeniería and IAEG International Association for Engineering Geology (national groups of Spain, Portugal, France). Madrid. Abstract pp. 63. CD. pp. 1–6.

  • Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–380.

    Article  Google Scholar 

  • Pennell, K.D., Karagunduz, A., Yeh, D.H., Martin, C.A., Chang, E.K., Pavlostathis, S.G. (2000). Influence of nonionic surfactants on the bioavailability of chlorinated benzenes for microbial reductive dechlorination. Presented at the 220th ACS National Meeting, Washington, DC. p. 724.

  • Peters, R. W., Montemagno, C. D., Shem, L., & Lewis, B. (1992). Surfactant screening of diesel-contaminated soil. Hazardous Waste and Hazardous Materials, 9, 2035–2042.

    Article  Google Scholar 

  • Pinto, L., & Moore, M. (2000). Release of polycyclic aromatic hydrocarbons from contamiated soils by surfactant and remediation of the effluent by Penicillum sp. Environmental Toxicology and Chemistry, 19, 2387–2392.

    Google Scholar 

  • Rosen, M. J. (1989). Surfactants and interfacial phenomena. New York: Wiley & Sons.

    Google Scholar 

  • Sánchez-Martín, M. J., Dorado, M. C., Del Hoyo, C., & Rodríguez-Cruz, M. S. (2008). Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays. Journal of Hazardous Materials, 150, 115–123.

    Article  Google Scholar 

  • Schwarzenbach, R., & Giger, W. (1985). Behavior and fate of halogenated hydrocarbons in ground water. In C. H. Ward, W. Giger, & P. L. McCarty (Eds.), Ground water quality. New York: Wiley-Interscience.

    Google Scholar 

  • Teixeira, S. C. G., Lourenço Ziolli, R., da Costa Marques, M., & Vidal Pérez, D. (2010). Study of pyrene adsorption on two brazilian soils. Water, Air, and Soil Pollution. doi:10.1007/s11270-010-0707-3.

    Google Scholar 

  • Tielmes, A. (1994). Degradation of polycylic aromatic hydrocarbons in the presence of syntethic surfactants. Applied and Environmental Microbiology, 60, 258–263.

    Google Scholar 

  • Volkering, F., Breure, A., Andel, J., & Rulkens, W. (1995). Influence of nonionic surfactants on bioavailability and biodegradation of polycylic aromatic hydrocarbons. Applied and Environmental Microbiology, 61, 1699–1705.

    CAS  Google Scholar 

  • Yalkowsky, S. H. (1999). Solubilization in aqueous media. Amercian Chemical Society, Washington, DC. New York: Oxford University Press.

    Google Scholar 

  • Yeon, I. T., Ghosh, M. M., Cox, C. D., & Robinson, K. G. (1995). Micellar solubilization of polynuclar aromatic hydrocarbon in coal tarcontaminated soils. Environmental Science & Technology, 29, 3015–3021.

    Article  Google Scholar 

  • Ying, G. G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International, 32, 417–431.

    Article  CAS  Google Scholar 

  • Yuan, S. Y., Wei, S. H., & Chang, B. V. (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41, 1463–1468.

    Article  CAS  Google Scholar 

  • Zhao, B., Zhu, L., Li, W., & Chen, B. (2005). Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere, 58, 33–40.

    Article  CAS  Google Scholar 

  • Zhou, W., & Zhu, L. (2008). Enhanced soil flushing of phenanthrene by anionic–nonionic mixed surfactant. Water Research, 42, 101–108.

    Article  CAS  Google Scholar 

  • Zhou, W., & Zhu, L. (2007). Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant–PAHs system. Environmental Pollution, 147, 66–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the initial contributions from Georgina Vidal from d D’ENGINY biorem. This work was supported by the CICYT project CGL2008-06373-C03-03/BTE and the Spanish National R&D + i Plan, project number CTM2007-60971. The Department of Chemical Engineering of the Universitat Autònoma de Barcelona is the Biochemical Engineering Unit of the Network for Research in Biotechnology (XRB) established by the government of Catalonia. Teresa Vicent is a member of a consolidated research group in Catalonia (2009-SGR-656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Folch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Escales, P., Sayara, T., Vicent, T. et al. Influence of Soil Granulometry on Pyrene Desorption in Groundwater Using Surfactants. Water Air Soil Pollut 223, 125–133 (2012). https://doi.org/10.1007/s11270-011-0844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0844-3

Keywords

Navigation