Skip to main content
Log in

Rhizosphere Influence and Seasonal Impact on Phytostabilisation of Metals—A Field Study

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Field experiments were conducted to assess the influence of plant growth and amendment addition on phytostabilisation of copper (Cu), lead (Pb), manganese (Mn) and zinc (Zn) along highway soil in southwest British Columbia, Canada. The plant species tested were Lolium perenne L (perennial rye grass), Festuca rubra L. (creeping red fescue) and Poa pratensis L. (Kentucky blue grass) and the amendments, lime and phosphate. The treatment efficiencies were assessed during different seasons as a completely randomized factorial experiment in split plot design. The research tasks involved: (1) quantifying the seasonal extent of metal accumulation in soil and assessing the seasonal impact on metal speciation for different soil amendments and plant species; (2) determining seasonal accumulation differences between sampling periods in plant parts; and (3) assessing the influence of root–soil interactions on metal dynamics. The amendments decreased the exchangeable fraction and plant uptake of all four metals. The lowest mobile fractions (exchangeable and carbonate bound) were found in soils growing Festuca for Cu, Lolium for Mn and a Lolium/Poa/Festuca combination for Pb and Zn. Metal accumulation and metal dynamics in the rhizosphere soil are compared with those of the bulk soil. The final outcome was the development of a remediation strategy for all four metals involving suitable plants and amendments and incorporating seasonal and rhizosphere influences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122, 121–142.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (1990). Soil processes and the behavior of metals. In B. J. Alloway (Ed.), Heavy metals in soils) (pp. 38–57). London: Blackie.

    Google Scholar 

  • Almas, A., Singh, B. R., & Salbu, B. (1999). Mobility of cadmium-109 and zinc-65 in soil influenced by equilibration time, temperature, and organic matter. Journal of Environmental Quality, 28, 1742–1750.

    Article  CAS  Google Scholar 

  • Arines, J., Porto, M. E., & Vilarino, A. (1992). Effect of manganese on vesicular-arbuscular mycorrhizal development in red clover plants and on soil Mn-oxidizing bacteria. Mycorrhiza, 1, 127–131.

    Article  CAS  Google Scholar 

  • Basta, N. T., & Tabatabai, M. A. (1992). Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Science, 153, 195–204.

    Article  CAS  Google Scholar 

  • Berggren, D. (1989). Speciation of aluminium, cadmium, copper, and lead in humic soil solutions—a comparison of the ion exchange column procedure and equilibrium dialysis. International Journal of Environmental Analytical Chemistry, 35, 1–15.

    Article  CAS  Google Scholar 

  • Brady, N. C., & Weil, R. R. (1996). The Nature and Properties of Soil (11th ed.). New Jersey: Prentice-Hall.

    Google Scholar 

  • Brekken, A., & Steinnes, E. (2004). Seasonal concentrations of cadmium and zinc in native pasture plants: consequences for grazing animals. Science of The Total Environment, 326, 181–195.

    Article  CAS  Google Scholar 

  • Brezonik, P. L., Mach, C. E., & Sampson, C. J. (2003). Geochemical controls for Al, Fe, Mn, Cd, Cu, Pb, and Zn during experimental acidification and recovery of Little Rock Lake, WI, USA. Biogeochemistry, 62, 119–143.

    Article  CAS  Google Scholar 

  • Brooks, R. R. (Ed.). (1998). Plants that hyperaccumulate heavy metals (p. 384). Wallingford: CAB International.

    Google Scholar 

  • Caçador, I., Vale, C., & Catarino, F. (2000). Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimone portulacoides from Tagus estuary salt marshes. Marine Environmental Research, 49, 279–290.

    Article  Google Scholar 

  • Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., et al. (1997). Phytoremediation of soil metals. Current Opinion in Biotechnology, 8, 279–284.

    Article  CAS  Google Scholar 

  • Chopin, E. I. B., Marin, B., Mkoungafoko, R., Rigaux, A., Hopgood, M. J., Delannoy, E., et al. (2008). Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Environmental Pollution, 156(3), 1092–1098.

    Article  CAS  Google Scholar 

  • Conesa, H. M., Faz, Á., & Arnaldos, R. (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain). Science of The Total Environment, 366, 1–11.

    Article  CAS  Google Scholar 

  • Cox, W. J., & Rains, D. W. (1972). Effect of lime on lead uptake by five plant species. Journal of Environmental Quality, 1, 167–169.

    Article  CAS  Google Scholar 

  • Djingova, R., & Kuleff, I. (1994). On the sampling of vascular plants for monitoring of heavy metal pollution. In B. Markert (Ed.), Environmental Sampling for Trace Analysis (pp. 395–414). Weinheim: Wiley-VCH.

    Chapter  Google Scholar 

  • Doran, J. W., & Safley, M. (1997). Defining and assessing soil health and sustainable productivity. In C. E. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological Indicators of Soil Health (pp. 1–28). Wallingford: CAB International.

    Google Scholar 

  • Duman, F., Olcay, O., & Demirezen, D. (2006). Seasonal changes of metal accumulation and distribution in shining pondweed (Potamogeton lucens). Chemosphere, 65(11), 2145–2151.

    Article  CAS  Google Scholar 

  • FHWA. (1998). Is Highway Runoff a Serious Problem? Office of Infrastructure R&D. McLean: Turner-Fairbank Highway Research Center. http://www.fhwa.dot.gov/terp/prog.htm#I129.

    Google Scholar 

  • Geebelen, W., Vangronsveld, J., Adriano, D. C., Van Poucke, L. C., & Clijsters, H. (2002). Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiologia Plantarum, 115, 377–384.

    Article  CAS  Google Scholar 

  • Gobran, R. G., Wenzel, W. W., & Lombi, E. (2001). Trace Elements in the Rhizosphere (p. 321). Washington: CRC Press.

    Google Scholar 

  • Gregory, P. J., & Hinsinger, P. (1999). New approaches to studying chemical and physical changes in the rhizosphere: an overview. Plant and Soil, 211, 1–9.

    Article  CAS  Google Scholar 

  • Hall, K. J., Kiffney, P., Macdonald, R., McCallum, D., Larkin, G., Richardson, J., et al. (1998). Non-Point Source Contamination in the Urban Environment of Greater Vancouver. A Case Study of the Brunette River Watershed. The Fraser River Action Plan Publications. Environment Canada. Environmental Conservation Branch. Vancouver: Aquatic and Atmospheric Sciences Division.

    Google Scholar 

  • Hathhorn, W. E., & Yonge, D. R. (1996). The Assessment of Groundwater Pollution Potential resulting from Storm water. Infiltration Best Management Research Report. U.S: FHWA.

    Google Scholar 

  • Hodes, G., Thomas, V., & Williams, A. (2003). A Strategy to Phase-Out Lead in African Gasoline. Renewable Energy for Development, Stockholm Environment Institute, 16(3), 1–4.

    Google Scholar 

  • Jacynthe, D. R. (2007). Influence of root activity on speciation and solubility of nutrients and metals in the rhizosphere. (Switzerland): Ph.D. thesis, Eidgenoessische Technische Hochschule Zuerich.

  • Jennings, A. A., & Petersen, E. J. (2006). Variability of North American regulatory guidance for heavy metal contamination of residential soil. Journal of Environmental Engineering and Science, 5, 485–506.

    Article  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace Elements in Soils and Plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Kim, N. D., & Fergusson, J. E. (1994). Seasonal variations in the concentrations of cadmium, copper, lead and zinc in leaves of the horse chestnut (Aesculus hippocastaneum L). Environmental Pollution, 86, 89–97.

    Article  CAS  Google Scholar 

  • Ksouri, R., Debez, A., Mahmoudi, H., Ouerghi, Z., Gharsalli, M., & Lachaal, M. (2007). Genotypic variability within Tunisian grapevine varieties (Vitis vinifera L.) facing bicarbonate induced iron deficiency. Plant Physiology and Biochemistry, 45, 315–322.

    Article  CAS  Google Scholar 

  • Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavymetals from soils. Environmental Science & Technology, 29(5), 1232–1238.

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2007). Stabilization of Pb- and Cu-contaminated soil using coal fly ash and peat. Environmental Pollution, 145, 365–373.

    Article  CAS  Google Scholar 

  • Lee, S. B., Kwon, S., Park, S., Jeong, M., Han, S., Byun, M., et al. (2003). Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Molecular Breeding, 11, 1–13.

    Article  CAS  Google Scholar 

  • Lombi, E., Zhao, F. J., McGrath, S. P., Young, S., & Sacchi, A. (2001). Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. The New Phytologist, 149, 53–60.

    Article  CAS  Google Scholar 

  • Ma, J., & Jennings, A. A. (2008). A model to evaluate internal acid neutralization resistance to soil extraction. Environmental Modelling and Software, 23(5), 663–669.

    Article  Google Scholar 

  • Martin, M. H., & Coughtrey, P. J. (1982). Biological Monitoring of Heavy Metal Pollution. Land and Air. London: Applied Science.

    Book  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press.

    Google Scholar 

  • Marschner, H. (1988). Mechanisms of manganese acquisition by roots from soils. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 191–204). London: Kluwer.

    Chapter  Google Scholar 

  • Marschner, P., Solaiman, Z., & Rengel, Z. (2007). Brassica genotypes differ in growth, phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biology and Biochemistry, 39, 87–98.

    Article  CAS  Google Scholar 

  • McBride, M. B. (1994). Environmental Chemistry of Soils. New York: Oxford University Press.

    Google Scholar 

  • McGowen, S. L., Basta, N. T., & Brown, G. O. (2001). Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. Journal of Environmental Quality, 30, 493–500.

    Article  CAS  Google Scholar 

  • Mench, M., Vangronsveld, J., Clijsters, H., Lepp, N. W., & Edwards, R. (2000). In situ metal immobilization and phytostabilization of contaminated soils. In N. Terry & G. Bañuelos (Eds.), Phytoremediation of Contaminated Soil and Water (pp. 323–358). Boca Raton: Lewis Publishing.

    Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation Technology: Hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184, 105–126.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2008). Sustainable remediation of Pb for Highway soils. International Conference on Waste Engineering and Management. Hong Kong: CSCE-HKIE.

    Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2009a). Phytoremediation of metal-contaminated soil in temperate humid regions of British Columbia, Canada. International Journal of Phytoremediation, 11(6), 575–590.

    Article  CAS  Google Scholar 

  • Padmavathiamma, P. K., & Li, L. Y. (2009b). Phytoremediation and its effect on mobility of metals in soil: a fractionation study. Land Contamination and Reclamation, 17(2), 223–236.

    Article  Google Scholar 

  • Patra, A. K., Abbadie, L., Clays-Josserand, A., Degrange, V., Grayston, S. J., Guillaumaud, N., et al. (2006). Effects of management regime and plant species on the enzyme activity and genetic structure of N-fixing denitrifying and nitrifying bacterial communities in grassland soils. Environmental Microbiology, 8, 1005–1016.

    Article  CAS  Google Scholar 

  • Petrangeli, P. M., Majone, M., & Rolle, E. (2001). Kaolinite sorption of Cd, Ni and Cu from landfill leachates: influence of leachate composition. Water Science and Technology, 44, 343–350.

    Google Scholar 

  • Preciado, H. F., & Li, L. Y. (2006). Evaluation of metal loadings and bioavailability in air, water and soil along two Highways of British Columbia, Canada. Water, Air, and Soil Pollution, 172, 81–108.

    Article  CAS  Google Scholar 

  • Ross, S. M. (1994). Toxic metals: fate and distribution in contaminated ecosystems. In S. M. Ross (Ed.), Toxic metals in soil–plant systems (pp. 189–243). Chichester: Wiley.

    Google Scholar 

  • de la Rosa, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2003). Utilization of ICP/OES for the determination of trace metal binding to different humic fractions. Journal of Hazardous Materials, 97, 207–218.

    Article  Google Scholar 

  • SAS. (2001). SAS user's guide: statistics. Cary: SAS Institute.

    Google Scholar 

  • Sanders, J. R., Adams, T. M., & Christensen, B. T. (1986). Extractability and bioavailability of zinc, nickel, cadmium and copper in three Danish soils sampled 5 years after application of sewage sludge. Journal of the Science of Food and Agriculture, 37, 1155–1164.

    Article  CAS  Google Scholar 

  • Salisbury, F. B., & Ross, C. W. (1992). Plant physiology. Belmont: Wadsworth Publishing Co.

    Google Scholar 

  • Shuman, L. M. (1999). Organic waste amendments effect on zinc fractions of two soils. Journal of Environmental Quality, 28, 1442–1447.

    Article  CAS  Google Scholar 

  • Simon, L. (2005). Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Environmental Geochemistry and Health, 27, 289–300.

    Article  CAS  Google Scholar 

  • Smith, R. A. H., & Bradshaw, A. D. (1979). The use of metal tolerant plant populations for the reclamation of metalliferous wastes. Journal of Applied Ecology, 16, 595–612.

    Article  CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental Soil Chemistry (Secondth ed., p. 368). San Diego: Academic.

    Google Scholar 

  • Sreevastava, P. C., & Gupta, U. C. (1996). Trace elements in crop production. Lebanon, USA: Science Publishers, Inc.

    Google Scholar 

  • Strobel, B. W., Hansen, H. C. B., Borggaard, O. K., Andersen, M. K., & Raulund-Rasmussen, K. (2001). Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry, 56, 1–26.

    Article  CAS  Google Scholar 

  • Tessier, A., Cambell, P. G. C., & Bisson, M. (1979). Sequential extraction procedures for the speciation of particulate trace metals. Analytica Chimica, 51, 844–851.

    Article  CAS  Google Scholar 

  • Thomson, N. R., Mcbean, E. A., Snodgrass, W., & Manstrenko, B. (1997). Highway stormwater runoff quality: development of surrogate parameter relationships. Water, Air, and Soil Pollution, 94, 307–347.

    CAS  Google Scholar 

  • Weis, J. S., & Weis, P. (2004). Metal uptake and transport and release by wetland plants: Implication for phytoremediation and restoration. Environmental International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. The New Phytologist, 80, 623–633.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs. John R. Grace and Les Lavkulich for critically reviewing the manuscript. We also thank the B.C. Ministry of Transportation and Infrastructure and NSERC for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loretta Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padmavathiamma, P.K., Li, L.Y. Rhizosphere Influence and Seasonal Impact on Phytostabilisation of Metals—A Field Study. Water Air Soil Pollut 223, 107–124 (2012). https://doi.org/10.1007/s11270-011-0843-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0843-4

Keywords

Navigation