Skip to main content

Long-Term Annual and Seasonal Patterns of Acidic Deposition and Stream Water Quality in a Great Smoky Mountains High-Elevation Watershed

Abstract

The recovery potential of stream acidification from years of acidic deposition is dependent on biogeochemical processes and varies among different acid-sensitive regions. Studies that investigate long-term trends and seasonal variability of stream chemistry in the context of atmospheric deposition and watershed setting provide crucial assessments on governing biogeochemical processes. In this study, water chemistries were investigated in Noland Divide watershed (NDW), a high-elevation watershed in the Great Smoky Mountains National Park (GRSM) of the southern Appalachian region. Monitoring data from 1991 to 2007 for deposition and stream water chemistries were statistically analyzed for long-term trends and seasonal patterns by using Seasonal Kendall Tau tests. Precipitation declined over this study period, where throughfall (TF) declined significantly by 5.76 cm year−1. Precipitation patterns play a key role in the fate and transport of acid pollutants. On a monthly volume-weighted basis, pH of TF and wet deposition, and stream water did not significantly change over time remaining around 4.3, 4.7, and 5.8, respectively. Per NDW area, TF SO4 2- flux declined 356.16 eq year−1 and SO4 2- concentrations did not change significantly over time. Stream SO4 2- remained about 30 μeq L−1 exhibiting no long-term trends or seasonal patterns. SO4 2- retention was generally greater during drier months. TF monthly volume-weighted NH4 + and NO3 - concentrations significantly increased by 0.80 μeq L−1 year−1 and 1.24 μeq L−1 year−1, respectively. TF NH4 + fluxes increased by 95.76 eq year−1. Most of NH4 + was retained in the watershed, and NO3 - retention was much lower than NH4 +. Stream monthly volume-weighted NO3 - concentrations and fluxes significantly declined by 0.56 μeq L−1 year−1 and 139.56 eq year−1, respectively. Overall, in NDW, inorganic nitrogen was exported before 1999 and retained since then, presumably from forest regrowth after Frazer fir die-off in the 1970s from balsam wooly adelgid infestation. Stream export of NO3 - was greater during winter than summer months. During the period from 1999 to 2007, stream base cations did not exhibit significant changes, apparently regulated by soil supply. Statistical models predicting stream pH, ANC, SO4 2-, and NO3 - concentrations were largely correlated with stream discharge and number of dry days between precipitation events and SO4 2- deposition. Dependent on precipitation, governing biogeochemical processes in NDW appear to be SO4 2- adsorption, nitrification, and NO3 - forest uptake. This study provided essential information to aid the GRSM management for developing predictive models of the future water quality and potential impacts from climate change.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aherne, J., Larssen, T., Cosby, B. J., & Dillon, P. J. (2006). Climate variability and forecasting surface water recovery from acidification: modeling drought-induced sulphate release from wetlands. The Science of the Total Environment, 365, 186–199.

    Article  CAS  Google Scholar 

  • Barker, M., Van Miegroet, H., Nicholas, N. S., & Creed, I. F. (2002). Variation in overstory nitrogen uptake in a small, high-elevation southern Appalachian spruce-fir watershed. Canadian Journal of Forest Research, 32, 1741–1752.

    Article  Google Scholar 

  • Burns, D. A., McHale, M. R., Driscoll, C. T., & Roy, K. M. (2006). Response of surface water chemistry to reduced levels of acid precipitation: comparison of trends in two regions of New York, USA. Hydrological Processes, 20(7), 1611–1627.

    Article  CAS  Google Scholar 

  • Cai, M., Johnson, A. M., Schwartz, J. S., Moore, S. E., & Kulp, M. A. (2010a). Soil acid-base chemistry of a high-elevation watershed in the Great Smoky Mountains National Park affected by long-term acid deposition. Water, Air, and Soil Pollution, in review.

  • Cai, M., Johnson, A. M., Schwartz, J. S., Moore, S. E., & Kulp, M. A. (2010b). Response of soil water chemistry to simulated changes in acid deposition in the Great Smoky Mountains. Journal of Environmental Engineering, preview manuscript, http://www.ascelibrary.org.

  • Cai, M., Schwartz, J. S., Robinson, B., Moore, S. E., & Kulp, M. A. (2010c). Long-term effects of acidic deposition on water quality in a high-elevation Great Smoky Mountains National Park watershed: use of an ion input-output budget. Water, Air, and Soil Pollution, 209, 143–156.

    Article  CAS  Google Scholar 

  • Castro, M. S., & Morgan, R. P., II. (2000). Input-output budgets of major ions for a forested watershed in western Maryland. Water, Air, and Soil Pollution, 119, 121–127.

    Article  CAS  Google Scholar 

  • Chapman, P. J., Edwards, A. C., & Cresser, M. S. (2001). The nitrogen composition of streams in upland Scotland: some regional and seasonal differences. The Science of the Total Environment, 265, 65–83.

    Article  CAS  Google Scholar 

  • Chen, L., Driscoll, C. T., Gbondo-Tugbawa, S., Mitchell, M. J., & Murdoch, P. S. (2004). The application of an integrated biogeochemical model (PnET-BGC) to five forested watersheds in the Adirondack and Catskill regions of New York. Hydrological Processes, 18, 2631–2650.

    Article  Google Scholar 

  • Chen, Y., & Lin, L. (2009). Responses of streams in central Appalachian Mountain region to reduced acidic deposition - comparisons with other regions in North America and Europe. The Science of the Total Environment, 407, 2285–2295.

    Article  CAS  Google Scholar 

  • Clow, D. W., & Mast, M. A. (1999). Long-term trends in stream water and precipitation chemistry at five headwater basins in the northeastern United States. Water Resources Research, 35(2), 541–554.

    Article  CAS  Google Scholar 

  • Cooper, D. M., & Jenkins, A. (2003). Response of acid lakes in the UK to reductions in atmospheric deposition of sulfur. The Science of the Total Environment, 313, 91–100.

    Article  CAS  Google Scholar 

  • Davies, J. J. L., Jenkins, A., Monteith, D. T., Evans, C. D., & Cooper, D. M. (2007). Trends in surface water chemistry of acidified UK freshwaters, 1988–2002. Environmental Pollution, 137, 27–39.

    Article  Google Scholar 

  • De Wit, H. A., Mulder, J., Hindar, A., & Hole, L. (2007). Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environmental Science & Technology, 47(22), 7706–7713.

    Article  Google Scholar 

  • Deyton, E. B., Schwartz, J. S., Robinson, R. B., Neff, K. J., Moore, S. E., & Kulp, M. A. (2009). Characterizing episodic stream acidity during stormflows in the Great Smoky Mountains National Park. Water, Air, and Soil Pollution, 196, 3–18. doi:10.1007/s11270-008-9753-5.

    Article  CAS  Google Scholar 

  • Dow, C. L., & DeWalle, D. R. (1997). Sulfur and nitrogen budgets for five forested Appalachian plateau basins. Hydrological Processes, 11, 801–816.

    Article  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Mitchell, M. J., & Raynal, D. J. (2003). Effect of acidic deposition on forest and aquatic ecosystems in New York State. Environmental Pollution, 123, 327–336.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Dukett, J. (2007). Changes in the chemistry of lakes in the Adirondack region of New York following declines in acidic deposition. Applied Geochemistry, 22, 1181–1188.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Driscoll, K. M., Roy, K. M., & Mitchell, M. J. (2003). Chemical response of lakes in the Adirondack Region of New York to declines in acidic deposition. Environmental Science & Technology, 37(10), 2036–2042.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Bulter, T. J., Cronan, C. S., Eagar, C., et al. (2001). Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience, 51(3), 180–197.

    Article  Google Scholar 

  • Driscoll, C. T., Likens, G. E., & Church, M. R. (1998). Recovery of surface waters in the northeastern U.S. from decrease in atmospheric deposition of sulfur. Water, Air, and Soil Pollution, 105, 319–329.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., Postek, K. M., Kretser, W., & Raynal, D. J. (1995). Long-term trends in the chemistry of precipitation and lake water in the Adirondack region of New York, USA. Water, Air, and Soil Pollution, 85, 583–588.

    Article  CAS  Google Scholar 

  • Driscoll, C. T., & van Dreason, R. (1993). Seasonal and long-term temporal patterns in the chemistry of Adirondack lakes. Water, Air, and Soil Pollution, 67, 319–344.

    Article  CAS  Google Scholar 

  • Eagar, C. (1984). Review of the biology and ecology of the balsam woolly aphid in southern Appalachian spruce-fir forests. In P.S. White (Ed.). The Southern Appalachian Spruce-fir Ecosystem: Its Biology and Threats. Research/Resource Management Report SER-71. USDI, National Park Service, Southeast Regional Office, Atlanta, GA.

  • Eimers, M. C., & Dillon, P. J. (2002). Climate effects on sulphate flux from forested catchments in south-central Ontario. Biogeochemistry, 61(3), 337–355.

    Article  CAS  Google Scholar 

  • Eimers, M. C., Dillon, P. J., & Watmough, S. A. (2004). Long-term (18-year) changes in sulphate concentrations in two Ontario headwater lakes and their inflows in response to decreasing deposition and climate variations. Hydrological Process, 18, 2617–2630.

    Article  Google Scholar 

  • Fölster, J., Bishop, K., Krám, P., Kvarnäs, H., & Wilander, A. (2003). Time series of long-term annual fluxes in the streamwater of nine forest catchments from the Swedish environmental monitoring program (PMK 5). The Science of the Total Environment, 310, 113–120.

    Article  Google Scholar 

  • Forsius, M., Vuorenmaa, J., Mannio, J., & Syri, S. (2003). Recovery from acidification of Finnish lakes: regional patterns and relations to emission reduction policy. The Science of the Total Environment, 310, 121–132.

    Article  CAS  Google Scholar 

  • Gbondo-Tugbawa, S. S., & Driscoll, C. T. (2002). Retrospective analysis of the response of soil and stream chemistry of a northern forest ecosystem to atmospheric emission controls from 1970 and 1990 amendments of the clean air act. Environmental Science & Technology, 36(22), 4714–4720.

    Article  Google Scholar 

  • Goodale, C. L., Aber, J. D., & Vitousek, P. M. (2003). An unexpected nitrate decline in New Hampshire streams. Ecosystems, 6, 75–86.

    Article  CAS  Google Scholar 

  • Helliwell, R. C., Davies, J. J. L., Evans, C. D., Jenkins, A., Coull, M. C., Reynolds, B., et al. (2007). Spatial and seasonal variations in nitrogen leaching and acidity across four acid-impacted regions of the UK. Water, Air, and Soil Pollution, 185, 3–19.

    Article  CAS  Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (2002). Statistical Methods in Water Resources. U.S. Geological Survey, Techniques of Water-Resources Investigations of the United States Geological Survey Book 4, Hydrologic Analysis and Interpretation. pp 341–342.

  • Helsel, D. R., Mueller, D. K., & Slack, J. R. (2006). Computer program for the Kendall family of trend tests. U.S. Geological Survey Scientific Investigations Report 2005–5275.

  • Hillman, D. C., Potter, J. F., & Simon, S. J. (1986). National Surface Water Survey, Eastern lake Survey—Phase I, analytical methods manual, EPA-600/4-86-009 (p. 170). Las Vegas: U.S. Environmental Protection Agency.

    Google Scholar 

  • Hirsch, R. M., & Slack, J. S. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 26, 727–732.

    Article  Google Scholar 

  • Hirsch, R. M., Slack, J. S., & Smith, R. A. (1982). Techniques of trend analysis for monthly water quality data. Water Resources Research, 18, 107–121.

    Article  Google Scholar 

  • Jeffries, D. S., Brydges, T. G., Dillon, P. J., & Keller, W. (2003). Monitoring the results of Canada/U.S.A acid rain control programs: some lake responses. Environmental Monitoring and Assessment, 88, 3–19.

    Article  CAS  Google Scholar 

  • Jenkins, A. (1999). End of the acid reign? Nature, 40, 537–538.

    Article  Google Scholar 

  • Jenkins, M. A. (2007). Vegetation communities of Great Smoky Mountains National Park. Southeastern Naturalist, Special Issue, 1, 35–56.

    Article  Google Scholar 

  • Johnson, D. W., & Lindberg, S. E. (Eds.). (1992). Atmospheric deposition and nutrient cycling in forest ecosystems: a synthesis of the Integrated Forest Study. New York: Springer.

    Google Scholar 

  • Johnson, D. W., Van Miegroet, H., Lindberg, S. E., & Todd, D. E. (1991). Nutrient cycling in red spruce forest of the Great Smoky Mountains. Canadian Journal of Forest Research, 21, 769–787.

    Article  CAS  Google Scholar 

  • Judd, K. E., Likens, G. E., & Groffman, P. M. (2007). High nitrate retention during winter in soils of the Hubbard Brook Experimental Forest. Ecosystems, 10(2), 217–225.

    Article  CAS  Google Scholar 

  • Kahl, J. S., Stoddard, J. L., Haeuber, R., Paulsen, S. G., Birnbaum, R., Deviney, F. A., et al. (2004). Have U.S. surface waters responded to the 1990 clean air act amendments? Environmental Science & Technology, 38(24), 485A–490A.

    Article  Google Scholar 

  • King, H. B., Wang, M. K., Zhuang, S. Y., Hwong, J. L., Liu, C. P., & Kang, M. J. (2006). Sorption of sulfate and retention of cations in forest soils of Lien-Hua-Chi watershed in central Taiwan. Geoderma, 131, 143–153.

    Article  CAS  Google Scholar 

  • Lehmann, C. M. B., Bowersox, V. C., Larson, R. S., & Larson, S. M. (2007). Monitoring long-term trends in sulfate and ammonium in US precipitation: results from the national atmospheric deposition program/national trends network. Water, Air, and Soil Pollution, 7, 59–66.

    Article  CAS  Google Scholar 

  • Likens, G. E., Driscoll, C. T., & Buso, D. C. (1996). Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272, 244–246.

    Article  CAS  Google Scholar 

  • McCartney, A. G., Harriman, R., Watt, A. W., Moore, D. W., Taylor, E. M., Collen, P., et al. (2003). Long-term trends in pH, aluminum and dissolved organic carbon in Scottish fresh waters; implications for brown trout (Salmo trutta) survival. The Science of the Total Environment, 310, 133–141.

    Article  CAS  Google Scholar 

  • McCracken, R. J., Shanks, R. E., & Clebsch, E. E. C. (1962). Soil morphology and genesis at higher elevations of the Great Smoky Mountains. Soil Science Society of America Proceedings, 26, 384–388.

    Article  Google Scholar 

  • Mitchell, M. J. (2001). Linkages of nitrate losses in watersheds to hydrological processes. Hydrological Processes, 15, 3305–3307.

    Article  Google Scholar 

  • Moore, P. T., Van Miegroet, H., & Nicholas, N. S. (2007). Relative role of understory and overstory in carbon and nitrogen cycling in a southern Appalachian spruce-fir forest. Canada Journal of Forest Research, 37, 2689–2700.

    Article  CAS  Google Scholar 

  • NADP. (2009). National Atmospheric Deposition Program; nadp.sws.uiuc.edu. Champaign: Illinois State Water Survey.

  • Neff, K. J., Schwartz, J. S., Henry, T. B., Robinson, R. B., Moore S. E., & Kulp, M. A. (2009). Physiological stress in native southern brook trout during episodic stream acidification in the Great Smoky Mountains National Park. Ecology of Freshwater Fish. 55, doi 10.1107/s00244-008-9269-4

  • Nicholas, N. S., Zedaker, S. M., & Eagar, C. (1992). A comparison of overstory community structure in three southern Appalachian spruce-fir forests. Bulletin of the Torrey Botanical Club, 199, 316–322.

    Article  Google Scholar 

  • Nodvin, S. C., Van Miegroet, H., Lindberg, S. E., Nicholas, N. S., & Johnson, D. W. (1995). Acidic deposition, ecosystem processes, and nitrogen saturation in a high elevation southern Appalachian watershed. Water, Air, and Soil Pollution, 85, 1647–1652.

    Article  CAS  Google Scholar 

  • Norton, S. A., Fernandez, I. J., Skahl, J. S., & Reinhardt, R. L. (2004). Acidification trends and the evolution of neutralization mechanisms through time at the Bear Brook watershed in Maine (BBWM), U.S.A. Water, Air, and Soil Pollution, 4, 289–310.

    CAS  Google Scholar 

  • NPS. (2010). U.S. Department of Interior, National Park Service, http://12.45.109.6/pls/portal/ data_request.mainfile.

  • Palmer, S. M., Driscoll, C. T., & Johnson, C. E. (2004). Long-term trends in soil solution and stream water chemistry at the Hubbard Brook Experimental Forest: relationship with landscape position. Biogeochemistry, 68, 51–70.

    Article  CAS  Google Scholar 

  • Pilgrim, W., Clair, T. A., Choate, J., & Hughes, R. (2003). Changes in acid precipitation-related water chemistry of lakes from southwestern New Brunswick, Canada. Environmental Monitoring and Assessment, 88, 39–52.

    Article  CAS  Google Scholar 

  • Robinson, R. B., Barnett, T. W., Harwell, G. R., Moore, S. E., Kulp, M., & Schwartz, J. S. (2008). pH and acid anion time trends in different elevation ranges in the Great Smoky Mountains National Park. Journal of Environmental Engineering, 134(9), 800–808.

    Article  CAS  Google Scholar 

  • Shannon, J. D. (1999). Regional trends in wet deposition of sulphate in the United States and SO2 emissions from 1980 through 1995. Atmospheric Environment, 33, 807–816.

    Article  CAS  Google Scholar 

  • Smith, G. F., & Nicholas, N. S. (2000). Size- and age-class distributions of Fraser fir following balsam woolly adelgid infestation. Canadian Journal of Forest Research, 30, 948–957.

    Article  Google Scholar 

  • SPSS. (2006). SPSS 15.0 Brief Guide. Chicago: SPSS Inc.

    Google Scholar 

  • Stoddard, J. L., Jeffries, D. S., Lükewille, A., Clair, T. A., Dillon, P. J., Driscoll, C. T., et al. (1999). Regional trends in aquatic recovery from acidification in North America and Europe. Nature, 401(6753), 575–578.

    Article  CAS  Google Scholar 

  • Stoddard, J. L., Kahl, J. S., Deviney, F. A., DeWalle, D. R., Driscoll, C. T., Herlihy, A. T., et al. (2003). Response of surface water chemistry to the Clean Air Act Amendments of 1990. Washington, DC: U.S. Environmental Protection Agency. U. S. Government Printing Office.

    Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Webb, J. R., Bulger, A. J., Snyder, K. U., et al. (2004). Regional model projections of future effects of sulfur and nitrogen deposition on streams in the southern Appalachian Mountains. Water Resources Research, 40, W02101. doi:10.1029/2003WR001998.

    Article  Google Scholar 

  • Sullivan, T. J., Cosby, B. J., Webb, J. R., Dennis, R. L., Bulger, A. J., & Deviney, F. A., Jr. (2008). Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia. Environmental Monitoring and Assessment, 137, 85–99.

    Article  CAS  Google Scholar 

  • U.S. Geological Survey. (2005). http://pubs.usgs.gov/sir/2005/5275/downloads/).

  • USDA-ARS. (1979). Field manual for research in agricultural hydrology. In: Agricultural handbook 224. Washington DC: US Department of Agriculture.

  • Van Miegroet, H., Creed, I. F., Nicholas, N. S., Tarboton, D. G., Webster, K. L., Shubzda, J., et al. (2001). Is there synchronicity in nitrogen input and output fluxes at the Noland Divide Watershed, a small N-saturated forested catchment in the Great Smoky Mountains National Park? The Scientific World, 1(S2), 480–492.

    Google Scholar 

  • Van Miegroet, H., Johnson, D. W., & Todd, D. E. (1993). Foliar response of red spruce saplings to fertilization with Ca and Mg in the Great Smoky Mountains National Park. Canada Journal of Forest Research, 23, 89–95.

    Article  Google Scholar 

  • Van Miegroet, H., Moore, P. T., Tewksburg, C. E., & Nicholas, N. S. (2007). Carbon sources and sinks in high-elevation spruce-fir forests of the Southeastern US. Forest Ecology and Management, 238, 249–260.

    Article  Google Scholar 

  • Vrba, J., Kopáček, J., Fott, J., Kohout, L., Nedbalová, L., Pražáková, M., et al. (2003). Long-term studies (1871–2000) on acidification and recovery of lakes in the Bohemian Forest (central Europe). The Science of the Total Environment, 310, 73–85.

    Article  CAS  Google Scholar 

  • Watmough, S. A., Aherne, J., Alewell, C., Arp, P., Bailey, S., Clari, T., et al. (2005). Sulfate, nitrogen and base cation budgets at 21 forested catchments in Canada, the United States and Europe. Environmental Monitoring and Assessment, 109, 1–36.

    Article  CAS  Google Scholar 

  • Watt, W. D., Scott, C. D., Zamora, P. J., & White, W. J. (2000). Acid toxicity levels in Nova Scotian rivers have not declined in synchrony with decline in sulfate levels. Water, Air, and Soil Pollution, 118, 203–229.

    Article  CAS  Google Scholar 

  • Webb, J. R., Cosby, B. J., Deviney, F. A., Jr., Galloway, J. N., Maben, S. W., & Bulger, A. J. (2004). Are brook trout streams in western Virginia and Shenandoah National Park recovering from acidification? Environmental Science & Technology, 38(15), 4091–4096.

    Article  CAS  Google Scholar 

  • Williard, K. W. J., DeWalle, D. R., Edwards, P. J., & Schnabel, R. R. (1997). Indicators of nitrate export from forested watersheds of the mid-Appalachians, United States of America. Global Biogeochemistry Cycles, 11(4), 649–656.

    Article  CAS  Google Scholar 

  • Wright, R. F., Aherne, J., Bishop, K., Camarero, L., Cosby, B. J., Erlandsson, M., et al. (2006). Modeling the effect of climate change on recovery of acidified freshwaters: relative sensitivity of individual processes in the MAGIC model. The Science of the Total Environment, 365, 154–166.

    Article  CAS  Google Scholar 

  • Wright, R. F., Alewell, C., Cullen, J. M., Evans, C. D., Marchetto, A., Moldan, F., et al. (2001). Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrology and Earth System Sciences, 5(3), 299–310.

    Article  Google Scholar 

Download references

Acknowledgements

Research for this project was funded by the U.S. Department of Interior, National Park Service Cooperative Agreement Grant No. 1443-CA-5460-98-006 (Amendment 10) and the U.S. Environmental Protection Agency through the University of Tennessee Natural Research Policy Center, USEPA Grant No. EM-83298901-1. We are thankful for the support of Dr. Nancy Finley, former Natural Resource Research Director at the GRSM. Because of the 16-year monitoring effort, the individuals who have helped in sample collection, laboratory analysis, and data management over the years are too numerous to list. In recent years, we are thankful for the support of Keil Neff, Tom Zimmerman, Lee Mauney, Karen Jackson, and Tom Barnett.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Schwartz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cai, M., Schwartz, J.S., Robinson, R.B. et al. Long-Term Annual and Seasonal Patterns of Acidic Deposition and Stream Water Quality in a Great Smoky Mountains High-Elevation Watershed. Water Air Soil Pollut 219, 547–562 (2011). https://doi.org/10.1007/s11270-010-0727-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0727-z

Keywords

  • Acidic deposition
  • Stream acidification, temporal trends
  • Seasonal variation
  • Water quality
  • Climate change
  • Southern Appalachian