Skip to main content

Advertisement

Log in

Effects of Elevated CO2 and Pb on Phytoextraction and Enzyme Activity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The wide-ranging impacts of globally increasing carbon dioxide (CO2) concentration and rising metal-contaminated soils are serious problems in terrestrial ecosystems. In this study, we investigated the effects of elevated CO2 on the lead (Pb) uptake of pine seedlings and the microbial activity in Pb-contaminated soil. Three-year-old pine seedlings were exposed to ambient, as well as elevated levels of CO2 (380 and 760 ppmv, respectively) in 500 mg/kg Pb-contaminated soil. Growth rates, C/N ratios and Pb uptake of the pine seedlings were determined. Dissolved organic carbon (DOC) content and microbial activity were also measured in the rhizosphere soil. Elevated CO2 significantly increased the total biomass and accumulation of Pb in roots and shoots. In addition, the accumulation of Pb in the roots under elevated CO2 concentration was four times higher than those in the roots under ambient CO2 concentration. Elevated CO2 levels also affected C/N ratios in the pine seedlings and soil enzyme activities. Decline in the overall nitrogen content and increases in the C/N ratios of pine needles were observed. Soil enzyme activity increased in the rhizosphere soils, including those of β-glucosidases, N-acetylglucosaminidases, and phosphatases. Quality of the DOC was affected by elevated CO2, while the quantity of DOC was affected by Pb additions under elevated CO2 conditions. Two major conclusions can be drawn from this study: (1) elevated CO2 significantly increased biomass and metal uptake of pine seedlings and (2) chemical metabolism on pine tissue and processes of organic decomposition were more affected by elevated CO2 levels than by Pb contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antoniadis, V., & Alloway, B. J. (2002). The role of dissolved organic carbon in the mobility of Cd, Ni, and Zn in sewage sludge-amended soils. Environment Pollution, 117, 515–521.

    Article  CAS  Google Scholar 

  • Bazzaz, F. A. (1990). The response of natural ecosystems to the rising global CO2, levels. Annual Review of Ecology and Systematics, 21, 167–196.

    Article  Google Scholar 

  • Berntson, G. M., & Bazzaz, F. A. (1996). Belowground positive and negative feedbacks on CO2 growth enhancement. Plant and Soil, 187, 110–131.

    Google Scholar 

  • Bunce, J. A. (2004). Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia, 140, 1–10.

    Article  Google Scholar 

  • Ceulemans, R. M., & Mosseau, M. (1994). Effects of elevated atmospheric CO2 on woody plants Tansley Review no. 71. New Phytology, 127, 425–446.

    Article  Google Scholar 

  • Chaney, R. L., Li, Y. M., Angle, J. S., Baker, A. J. M., Reeves, R. D., Brown, S. L., et al. (1999). Phytoremediation of Contaminated Soil and Water. In Improving metal-hyperaccumulators wild plants to develop commercial phytoremediation systems: approaches and progress. Boca Raton: CRC.

    Google Scholar 

  • Chen, B., & Zhu, Y. G. (2006). Humic acids increase the phytoavailability of Cd and Pb to wheat plants cultivated in freshly spiked, contaminated soil. Journal of Soils Sediment, 6, 236–242.

    Article  CAS  Google Scholar 

  • Chin, Y., Aiken, G., & O’Loughlin, E. (1994). Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environmental Science and Technology, 28, 1853–1858.

    Article  CAS  Google Scholar 

  • Cornelis, A. M. G. (2008). Physico-chemical and biological parameters determine metal bioavailability in soils. The Science of the Total Environment, 406, 385–395.

    Article  Google Scholar 

  • Davis, J. A., & Leckie, J. O. (1978). Effect of absorbed complexing ligands on trace metal uptake by hydrous oxides. Environmental Science and Technology, 12, 1309–1315.

    Article  CAS  Google Scholar 

  • DeLucia, E. H., Hamilton, J. G., Naidu, S. L., Thomas, R. B., Andrews, J. A., Finzi, A., et al. (1999). Net primary production of a forest ecosystem with experimental CO2 enrichment. Science, 14(184), 1177–1179.

    Article  Google Scholar 

  • Dorich, R. A., & Nelson, D. W. (1983). Direct measurement of ammonium in potassium chloride extracts of soils. Soil Science Society of America Journal, 47, 833–836.

    Article  CAS  Google Scholar 

  • Dowdall, M., Standring, W., Shaw, G., & Strand, P. (2008). Will global warming affect soil-to-plant transfer of radionuclides? Journal of Environmental Radioactive, 99, 1736–1745.

    Article  CAS  Google Scholar 

  • Ekenler, M., & Tabatabai, M. A. (2002). Effects of trace elements on β-glucosamidase activity in soils. Soil Biology and Biochemistry, 34, 1829–1832.

    Article  CAS  Google Scholar 

  • Ellsworth, D. S. (1999). CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? Plant, Cell & Environent, 22, 461–472.

    Article  Google Scholar 

  • EPA, U. S. (1986). Test methods for evaluating solid waste. SW-846, method 9081. Washington DC: Environmental Protection Agency.

    Google Scholar 

  • Finzi, A. C., Moore, D. J. P., DeLucia, E. H., Lichter, J., Hofmockel, K. S., Jackson, R. B., et al. (2006). Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology, 87, 15–25.

    Article  Google Scholar 

  • Freeman, C., Liska, G., Ostle, N. J., Lock, M. A., Reynolds, B., & Hudson, J. (1996). Microbial activity and enzymic decomposition processes following peatland water table drawdown. Plant and Soil, 180, 121–127.

    Article  CAS  Google Scholar 

  • Freeman, C., Fenner, N., Ostle, N. J., Kang, H., Dowrick, D. J., & Reynolds, B. (2004). Dissolved organic carbon export from peatlands under elevated carbon dioxide levels. Nature, 430, 195–198.

    Article  CAS  Google Scholar 

  • Gelderman, R. H., & Beegle, D. (1998). Nitrate–nitrogen. Recommended chemical soil test procedures for the North Central Region. North Central Regional Research Publication No. 221 (Revised). Columbia: Missouri Agricultural Experiment Station.

    Google Scholar 

  • Gifford, R. M. (1994). The global carbon cycle: a viewpoint on the missing sink. Australian journal of Plant Physiology, 21, 1–15.

    Article  Google Scholar 

  • Gifford, R. M., Barrett, D. J., & Lutze, J. L. (2000). The effects of elevated [CO2] on the C/N and C: P mass ratios of plant tissues. Plant and Soil, 224, 1–14.

    Article  CAS  Google Scholar 

  • Glazovskaya, M. A. (1994). Criteria for classification of soils according to lead-pollution risk. Eurasian Soil Science, 26, 58–74.

    Google Scholar 

  • Greszta, J. (1982). Correlation between content of copper, zinc, lead and cadmium in the soil and the content of these metals in the seedlings of selected forest tree species. Fragment Florist Geo-botany, 28, 29–52.

    Google Scholar 

  • Grodzinska, L., & Kazmierczakowa, R. (1977). Heavy metal content in the plants of cracow parks. Bulletin Academy Policy Science Ser Biology, 25, 227–234.

    CAS  Google Scholar 

  • Gunderson, C. A., Sholtis, J. D., Wullshleger, S. D., Tissue, D. T., Hanson, P. J., & Norby, R. J. (2002). Environmental and stomatal control of photosynthetic enhancement in the canopy of a sweetgum (Liquidambar styraciflua L.) plantation during 3 years of CO2 enrichment. Plant, Cell & Environment, 25, 379–393.

    Article  Google Scholar 

  • Guo, H. Y., Jia, H. X., Zhu, J. G., & Wang, X. R. (2006). Influence of the environmental behavior and ecological effect of cropland heavy metal contaminants by CO2 enrichment in atmosphere. Chinese Journal of Geochemistry, 25, 212.

    Article  Google Scholar 

  • Hamilton, J. G., DeLucia, D. H., George, K., Naidu, S. L., Finzi, A. C., & Schlesinger, W. H. (2002). Forest carbon balance under elevated CO2. Oecologia, 131, 250–260.

    Article  Google Scholar 

  • Hartwig, U. A., Zanetti, S., Hebelson, T., Lüscher, A., Frehner, M., Fischer, B., et al. (1996). Symbiotic nitrogen fixation: one key to understanding the response of temperate grassland ecosystems to elevated CO2? In C. Kömer & F. Bazzaz (Eds.), Carbon dioxide, populations, communities (pp. 253–264). San Diego: Academic.

    Chapter  Google Scholar 

  • He, Z. L., Yang, X. E., Baligar, V. C., & Calvert, D. V. (2003). Microbiological and biochemical indexing systems for assessing acid soil quality. Advances in Agronomy, 78, 89–138.

    Article  CAS  Google Scholar 

  • Henry, H., Juarez, J. D., Field, C. B., & Vitousek, P. M. (2005). Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland. Global Change Biology, 11, 1808–1815.

    Article  Google Scholar 

  • Herngren, L., Goonetilleke, A., & Ayoko, G. A. (2005). Understanding heavy metal and suspended solids relationships in urban stormwater using simulated rainfall. Journal of Environmental Management, 76, 149–158.

    Article  CAS  Google Scholar 

  • Hofrichter, M., & Fakoussa, R. (2001). Microbial degradation and modify cation of coal. In A. Steinbüchel & M. Hofrichter (Eds.), Lignin, humic substances and coal vol 1 (pp. 393–427). Weinheim: Wiley.

    Google Scholar 

  • Hutchinson, S. L., Banks, M. K., & Schwab, A. P. (2001). Phytoremediation of aged petroleum sludge: effect of inorganic fertilizer. Journal of Environmental Quality, 30, 395–403.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Climate Change 2007: the physical science basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  • Jia, H. X., Guo, H. Y., Yin, Y., Wang, Q., Sun, Q., Wang, X. R., et al. (2007). Responses of rice growth to copper stress under free-air CO2 enrichment (FACE). Chinese Science Bulletin, 52, 2636–2641.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (1993). Behavioural properties of trace metals in soils. Applied Ecochemistry, 2, 3–9.

    Article  CAS  Google Scholar 

  • Kang, H. J., Kim, S. Y., Fenner, N., & Freeman, C. (2005). Shift of soil enzyme activities in wetlands exposed to elevated CO2. The Science of the Total Environment, 337, 207–212.

    Article  CAS  Google Scholar 

  • King, J. W., Mohamed, A., Taylor, S. L., Mebrahtu, T., & Paul, C. (2001). Supercritical fluid extraction of Vernonia galmensis seeds. Industrial Crops and Products, 14, 241–249.

    Article  CAS  Google Scholar 

  • Lagier, T., Feuillade, G., & Matejka, G. (2000). Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie, 20, 537–546.

    Article  Google Scholar 

  • Larson, J. L., Zak, D. R., & Sinsabaugh, R. L. (2002). Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Biology and Biochemistry, 66, 1848–1856.

    CAS  Google Scholar 

  • Leakey, A. D. B., Bernacchi, C. J., Ort, D. R., & Long, S. P. (2006). Longterm growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant, Cell & Environment, 29, 1794–1800.

    Article  CAS  Google Scholar 

  • Liao, X. Y., Chen, T. B., Yan, X. L., Xie, H., Yan, X. L., Zhai, L. M., et al. (2007). Selecting appropriate forms of nitrogen fertilizer to enhance soil arsenic removal by Pteris vittata: a new approach in phytoremediation. International Journal of Phytoremediation, 9, 269–280.

    Article  CAS  Google Scholar 

  • Lieffering, M., Kim, H. Y., Kobayashi, K., & Okada, M. (2004). The impact of elevated CO2 on the elemental concentrations of field-grown rice grains. Field Crops Research, 88, 279–286.

    Article  Google Scholar 

  • Liu, Y., Li, Y., Li, X., & Jiang, Y. (2008). Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment. Waste Management, 28, 1126–1136.

    Article  CAS  Google Scholar 

  • Marchi, S., Tognetti, R., Vaccari, F. P., Lanini, M., Kaligaric, M., Miglietta, F., et al. (2004). Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs. Functional Plant Biology, 31, 181–194.

    Article  CAS  Google Scholar 

  • Matthias, C. R., Kate, M. S., Jhon, N. K., & Michael, F. A. (1997). Microbial carbon-substrate utilization in the rhizosphere of Gutierrezia Sarothrae grown in elevated atmospheric carbon dioxide. Soil Biology and Biochemistry, 29, 1387–1394.

    Article  Google Scholar 

  • Mayr, C., Miller, M., & Insam, H. (1999). Elevated CO2 alters community-level physiological profiles and enzyme activities in alpine grasslands. Journal of Microbiology Methods, 36, 35–43.

    Article  CAS  Google Scholar 

  • Medlyn, B. E., Barton, C. V. M., & Broadmeadow, M. S. J. (2001). Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytology, 149, 247–264.

    Article  Google Scholar 

  • Melillo, J. M., Callaghan, T. V., Woodward, F. I., Salati, E., & Sinha, S. K. (1990). Effects on ecosystems. In J. T. Houghton, G. J. Jenkins, & J. J. Ephraums (Eds.), Climate change: the IPCC scientific assessment, Cambridge. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morgan, J. A., Pataki, D. E., & Körner, C. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11–25.

    Article  CAS  Google Scholar 

  • Naidu, S. L., DeLucia, E. H., & Thomas, R. B. (1998). Contrasting patterns of biomass allocation in dominant and suppressed loblolly pine. Canadian Journal of Forest Research, 28, 1116–1124.

    Article  Google Scholar 

  • Naumburg, E., Housman, D. C., Huxman, T. E., Charlet, T. N., Loik, M. E., & Smith, S. D. (2003). Photosynthetic responses of Mojave Desert shrubs to free air CO2 enrichment are greatest during wet years. Global Change Biology, 9, 276–285.

    Article  Google Scholar 

  • Pushnik, J. C., Garcoa-Ibilcieta, D., Bauer, S., Anderson, P. D., & Houpis, J. (1999). Biochemical reponses and altered genetic expression patterns in ponderosa Pine (Pinus ponderosa Doug ex P.Laws) grown under elevated CO2. Water, Air, and Soil Pollution, 116, 413–422.

    Article  CAS  Google Scholar 

  • Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microbial Ecology, 37, 218–224.

    Article  CAS  Google Scholar 

  • Ross, D. J., Tate, K. R., & Newton, P. C. D. (1995). Elevated CO2 and temperature effects on soil carbon and nitrogen cycling in ryegrass/white clover turves of an Endoaquept Soil. Plant and Soil, 176, 37–49.

    Article  CAS  Google Scholar 

  • Rouhier, H., & Read, D. J. (1998). Plant and fungal responses to elevated atmospheric carbon dioxide in mycorrhizal seedling of Pinus sylvestris. Environmental and Experiment Botany, 40, 237–246.

    Article  Google Scholar 

  • Scigelova, M., & Crout, D. H. G. (1999). Microbial β-N-acetylhexosaminidase and their biotechnological applications. Enzyme and Microbial Technology, 25, 3–14.

    Article  CAS  Google Scholar 

  • Tabatabai, M. A. (1982). Soil enzymes. In A. L. Page (Ed.), Methods of soil analysis. Part 2. Agronomy monograph 9 (pp. 903–904). Madison: American Society of Agronomy.

    Google Scholar 

  • Tang, S. R., Xi, L., Zheng, J. M., & Li, H. Y. (2003). Response to elevated CO2 of Indian mustard and sunflower growing on copper contaminated soil. Bulletin Environmental Contaminant Toxicology, 71, 988–997.

    Article  CAS  Google Scholar 

  • White, M. C., Decker, A. M., & Chaney, R. L. (1991). Metal complexation in xylem fluid I: Chemical composition of tomato and soybean stem exudates. Plant Physiology, 67, 292–300.

    Article  Google Scholar 

  • Wierzbicka, M. (1999). Comparison of lead tolerance in Allum cepa with other plant species. Environmental Pollution, 104, 41–52.

    Article  CAS  Google Scholar 

  • Woodward, F. I. (2002). Potentional impacts of global elevated CO2 concentrations on plants. Physiology and Metabolism, 5, 207–211.

    CAS  Google Scholar 

  • Wu, H. B., Tang, S. R., Zhang, X. M., Guo, J. K., Song, Z. G., Tian, S., et al. (2009). Using elevated CO2 to increase the biomass of a Sorghum vulgare × Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium. Journal of Hazard Material, 170, 861–870.

    Article  CAS  Google Scholar 

  • Yilmaz, S. (2002). Determination of optimal land use of Erzurum plain, Atatűrk Űniversity. Agriculture Faculty, 32(4), 485–498.

    Google Scholar 

  • Zak, D. R., Pregitzer, K. S., King, J. S., & Holmes, W. E. (2000). Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytology, 147, 201–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Kang is grateful to NRF (2009-0079549), EcoRiver, and EcoSTAR for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hojeong Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Kang, H. Effects of Elevated CO2 and Pb on Phytoextraction and Enzyme Activity. Water Air Soil Pollut 219, 365–375 (2011). https://doi.org/10.1007/s11270-010-0713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0713-5

Keywords

Navigation