Skip to main content
Log in

Foliar Nitrogen Uptake from Wet Deposition and the Relation with Leaf Wettability and Water Storage Capacity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study assessed the foliar uptake of 15N-labelled nitrogen (N) originating from wet deposition along with leaf surface conditions, measured by wettability and water storage capacity. Foliar 15N uptake was measured on saplings of silver birch, European beech, pedunculate oak and Scots pine and the effect of nitrogen form (NH +4 or NO 3 ), NH +4 to NO 3 ratio and leaf phenology on this N uptake was assessed. Next to this, leaf wettability and water storage capacity were determined for each tree species and phenological stage, and the relationship with 15NH +4 and 15NO 3 uptake was examined. Uptake rates were on average five times higher (p < 0.05) for NH +4 than for NO 3 and four times higher for deciduous species than for Scots pine. Developing leaves showed lower uptake than fully developed and senescent leaves, but this effect was tree species dependent. The applied NH +4 to NO 3 ratio did only affect the amount of N uptake by senescent leaves. The negative correlation between measured leaf contact angles and foliar N uptake demonstrates that the observed effects of tree species and phenological stage are related to differences in leaf wettability and not to water storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience, 48, 921–934.

    Article  Google Scholar 

  • Ammann, M., Siegwolf, R., Pichlmayer, F., Suter, M., Saurer, M., & Brunold, C. (1999). Estimating the uptake of traffic-derived NO2 from N-15 abundance in Norway spruce needles. Oecologia, 118, 124–131.

    Article  Google Scholar 

  • Andre, F., Jonard, M., & Ponette, Q. (2008). Precipitation water storage capacity in a temperate mixed oak-beech canopy. Hydrological Processes, 22, 4130–4141.

    Article  Google Scholar 

  • Aston, A. R. (1979). Rainfall interception by 8 small trees. Journal of Hydrology, 42, 383–396.

    Article  Google Scholar 

  • Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8.

    Article  CAS  Google Scholar 

  • Bowden, R. D., Geballe, G. T., & Bowden, W. B. (1989). Foliar uptake of N-15 from simulated cloud water by red spruce (Picea-Rubens) seedlings. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 19, 382–386.

    Article  Google Scholar 

  • Bowman, W. D., Cleveland, C. C., Halada, L., Hresko, J., & Baron, J. S. (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767–770.

    Article  CAS  Google Scholar 

  • Boyce, R. L., Mccune, D. C., & Berlyn, G. P. (1991). A comparison of foliar wettability of red spruce and balsam fir growing at high elevation. The New Phytologist, 117, 543–555.

    Article  Google Scholar 

  • Boyce, R. L., Friedland, A. J., Chamberlain, C. P., & Poulson, S. R. (1996). Direct canopy nitrogen uptake from N-15-labeled wet deposition by mature red spruce. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 26, 1539–1547.

    Article  Google Scholar 

  • Brewer, C. A., Smith, W. K., & Vogelmann, T. C. (1991). Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell & Environment, 14, 955–962.

    Article  Google Scholar 

  • Bruckner, G., Gebauer, G., & Schulze, E. D. (1993). Uptake of (NH3)-N-15 by Picea abies in closed-chamber experiments. Isotopenpraxis, 29, 71–76.

    Article  CAS  Google Scholar 

  • Brumme, R., Leimcke, U., & Matzner, E. (1992). Interception and uptake of NH +4 and NO 3 from wet deposition by aboveground parts of young beech (Fagus sylvatica L) trees. Plant and Soil, 142, 273–279.

    Article  CAS  Google Scholar 

  • Calanni, J., Berg, E., Wood, M., Mangis, D., Boyce, R., Weathers, W., et al. (1999). Atmospheric nitrogen deposition at a conifer forest: response of free amino acids in Engelmann spruce needles. Environmental Pollution, 105, 79–89.

    Article  CAS  Google Scholar 

  • Carslaw, D. C., Beevers, S. D., & Bell, M. C. (2007). Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmospheric Environment, 41, 2073–2082.

    Article  CAS  Google Scholar 

  • Chavez-Aguilar, G., Fenn, M. E., Gomez-Guerrero, A., Vargas-Hernandez, J., & Horwath, W. R. (2006). Foliar nitrogen uptake from simulated wet deposition in current-year foliage of Abies religiosa (H. B. K.) Schl. et Cham. Agrociencia, 40, 373–381.

    Google Scholar 

  • Dail, D. B., Hollinger, D. Y., Davidson, E. A., Fernandez, I., Sievering, H. C., Scott, N. A., et al. (2009). Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia, 160, 589–599.

    Article  Google Scholar 

  • de Vries, W., Reinds, G.J., van der Salm, C., Draaijers, G., Bleeker, A. & Erisman, J.W. (2001). Intensive monitoring of forest ecosystems in Europe. Technical report 2001. Brussels, Geneva: EC-UN/ECE.

  • de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., van Oijen, et al. (2009). The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258, 1814–1823.

    Article  Google Scholar 

  • Eichert, T., & Goldbach, H. E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiologia Plantarum, 132, 491–502.

    Article  CAS  Google Scholar 

  • Eilers, G., Brumme, R., & Matzner, E. (1992). Aboveground N-uptake from wet deposition by Norway spruce (Picea-abies Karst). Forest Ecology and Management, 51, 239–249.

    Article  Google Scholar 

  • Erisman, J. W., & Draaijers, G. (2003). Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation. Environmental Pollution, 124, 379–388.

    Article  CAS  Google Scholar 

  • Fitter, A. H., & Peat, H. J. (1994). The ecological flora database. Journal of Ecology, 82, 415–425.

    Article  Google Scholar 

  • Gaige, E., Dail, D. B., Hollinger, D. Y., Davidson, E. A., Fernandez, I. J., Sievering, H., et al. (2007). Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems, 10, 1133–1147.

    Article  CAS  Google Scholar 

  • Garten, C. T., & Hanson, P. J. (1990). Foliar retention of N-15-nitrate and N-15-ammonium by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain. Environmental and Experimental Botany, 30, 333–342.

    Article  CAS  Google Scholar 

  • Garten, C. T., Schwab, A. B., & Shirshac, T. L. (1998). Foliar retention of N-15 tracers: implications for net canopy exchange in low- and high-elevation forest ecosystems. Forest Ecology and Management, 103, 211–216.

    Article  Google Scholar 

  • Gilliam, F. S. (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176–1191.

    Article  CAS  Google Scholar 

  • Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environmental Reviews, 14, 1–57.

    Article  CAS  Google Scholar 

  • Hagen-Thorn, A., Varnagiryte, I., Nihlgard, B., & Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228, 33–39.

    Article  Google Scholar 

  • Haines, B. L., Jernstedt, J. A., & Neufeld, H. S. (1985). Direct foliar effects of simulated acid-rain.2. Leaf surface characteristics. The New Phytologist, 99, 407–416.

    Article  CAS  Google Scholar 

  • Hall, D. M., & Burke, W. (1974). Wettability of leaves of a selection of New Zealand plants. New Zealand Journal of Botany, 12, 283–298.

    Google Scholar 

  • Hall, D. M., Matus, A. I., Lamberto, J., & Barber, H. N. (1965). Infra-specific variation in wax on leaf surfaces. Australian Journal of Biological Science, 18, 323–332.

    CAS  Google Scholar 

  • Hansen, K., Draaijers, G. P. J., Ivens, W. P. M. F., Gundersen, P., & Vanleeuwen, N. F. M. (1994). Concentration variations in Rain and Canopy throughfall collected sequentially during individual rain events. Atmospheric Environment, 28, 3195–3205.

    Article  CAS  Google Scholar 

  • Harrison, A. F., Schulze, E.-D., Gebauer, G., & Bruckner, G. (2000). Canopy uptake and utilization of atmospheric pollutant nitrogen. In E.-D. Schulze (Ed.), Carbon and nitrogen cycling in European forest ecosystems (pp. 171–188). Berlin: Springer.

    Google Scholar 

  • Herwitz, S. R. (1985). Interception storage capacities of tropical rainforest canopy trees. Journal of Hydrology, 77, 237–252.

    Article  Google Scholar 

  • Hikosaka, K. (2005). Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521–533.

    Article  CAS  Google Scholar 

  • Holloway, P. J. (1969). Effects of superficial wax on leaf wettability. The Annals of Applied Biology, 63, 145–153.

    Article  Google Scholar 

  • Houle, D., Ouimet, R., Paquin, R., & Laflamme, J. (1999). Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 29, 1944–1957.

    Article  CAS  Google Scholar 

  • Laubhann, D., Sterba, H., Reinds, G. J., & De Vries, W. (2009). The impact of atmospheric deposition and climate on forest growth in European monitoring plots: an individual tree growth model. Forest Ecology and Management, 258, 1751–1761.

    Article  Google Scholar 

  • Levy, Y., & Horesh, I. (1984). Importance of penetration through stomata in the correction of chlorosis with iron salts and low-surface-tension surfactants. Journal of Plant Nutrition, 7, 279–281.

    Article  CAS  Google Scholar 

  • Lumme, I. (1994). Nitrogen uptake of Norway spruce (Picea-abies Karst) seedlings from simulated wet deposition. Forest Ecology and Management, 63, 87–96.

    Article  Google Scholar 

  • Lumme, I., & Smolander, A. (1996). Effect of nitrogen deposition level on nitrogen uptake and bud burst in Norway spruce (Picea abies Karst.) seedlings and nitrogen uptake by soil microflora. Forest Ecology and Management, 89, 197–204.

    Article  Google Scholar 

  • Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., et al. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848–850.

    Article  Google Scholar 

  • Maier-Maercker, U. (1983). The role of peristomatal transpiration in the mechanism of stomatal movement. Plant, Cell & Environment, 6, 369–380.

    Article  Google Scholar 

  • Millard, P., & Proe, M. F. (1993). Nitrogen uptake, partitioning and internal cycling in Picea sitchensis (Bong.) Carr. as influenced by nitrogen supply. The New Phytologist, 125, 113–119.

    Article  CAS  Google Scholar 

  • Millard, P., & Thompson, C. M. (1989). The effect of the autumn senescence of leaves on the internal cycling of nitrogen for the spring growth of apple trees. Journal of Experimental Botany, 40, 1285–1289.

    Article  CAS  Google Scholar 

  • Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., et al. (2009). Atmospheric composition change—global and regional air quality. Atmospheric Environment, 43, 5268–5350.

    Article  CAS  Google Scholar 

  • Mussche, S., Samson, R., Nachtergale, L., De Schrijver, A., Lemeur, R., & Lust, N. (2001). A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35, 373–384.

    Google Scholar 

  • Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjonaas, O. J., Koopmans, C. J., Schleppi, P., et al. (1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145–148.

    Article  CAS  Google Scholar 

  • Neary, A. J., & Gizyn, W. I. (1994). Throughfall and stemflow chemistry under deciduous and coniferous forest canopies in south-central Ontario. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 24, 1089–1100.

    Article  CAS  Google Scholar 

  • Niinemets, U., & Tamm, U. (2005). Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology, 25, 1001–1014.

    Google Scholar 

  • Peuke, A. D., Jeschke, W. D., Dietz, K. J., Schreiber, L., & Hartung, W. (1998). Foliar application of nitrate or ammonium as sole nitrogen supply in Ricinus communis—I. Carbon and nitrogen uptake and inflows. The New Phytologist, 138, 675–687.

    Article  CAS  Google Scholar 

  • Rennenberg, H., & Gessler, A. (1999). Consequences of N deposition to forest ecosystems—recent results and future research needs. Water, Air, and Soil Pollution, 116, 47–64.

    Article  CAS  Google Scholar 

  • Rennenberg, H., Kreutzer, K., Papen, H., & Weber, P. (1998). Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. The New Phytologist, 139, 71–86.

    Article  CAS  Google Scholar 

  • Sampson, D. A., Janssens, I. A., & Ceulemans, R. (2006). Under-story contributions to stand level GPP using the process model SECRETS. Agricultural and Forest Meteorology, 139, 94–104.

    Article  Google Scholar 

  • Sase, H., Takahashi, A., Sato, M., Kobayashi, H., Nakata, M., & Totsuka, T. (2008). Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest. Environmental Pollution, 152, 1–10.

    Article  CAS  Google Scholar 

  • Schreiber, L., Skrabs, M., Hartmann, K. D., Diamantopoulos, P., Simanova, E., & Santrucek, J. (2001). Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta, 214, 274–282.

    Article  CAS  Google Scholar 

  • Sievering, H., Tomaszewski, T., & Torizzo, J. (2007). Canopy uptake of atmospheric N deposition at a conifer forest: part I—canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus Series B-Chemical and Physical Meteorology, 59, 483–492.

    Article  Google Scholar 

  • Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., et al. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecology and Management, 258, 1735–1750.

    Article  Google Scholar 

  • Sparks, J. P. (2009). Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia, 159, 1–13.

    Article  Google Scholar 

  • Staelens, J., Houle, D., De Schrijver, A., Neirynck, J., & Verheyen, K. (2008). Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water, Air, and Soil Pollution, 191, 149–169.

    Article  CAS  Google Scholar 

  • Sutton, M. A., Burkhardt, J. K., Guerin, D., Nemitz, E., & Fowler, D. (1998). Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange. Atmospheric Environment, 32, 473–480.

    Article  CAS  Google Scholar 

  • Thimonier, A., Schmitt, M., Waldner, P., & Rihm, B. (2005). Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots. Environmental Monitoring and Assessment, 104, 81–118.

    Article  CAS  Google Scholar 

  • Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17.

    Article  Google Scholar 

  • Tyree, M. T., Scherbatskoy, T. D., & Tabor, C. A. (1990). Leaf cuticles behave as asymmetric membranes—evidence from the measurement of diffusion potentials. Plant Physiology, 92, 103–109.

    Article  CAS  Google Scholar 

  • Vallano, D. M., & Sparks, J. P. (2008). Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar delta N-15 values. The New Phytologist, 177, 946–955.

    Article  CAS  Google Scholar 

  • Verstraeten, A., Sioen, G., Neirynck, J., Genouw, G., Coenen, S., Van der Aa, B., et al. (2007). Bosvitaliteitsinventaris, meetnet intensieve monitoring bosecosystemen en meetstation luchtverontreiniging: resultaten 2006, Rapporten van het Instituut voor Natuur-en Bosonderzoek 2007. Geraardsbergen, UK: Instituut voor Natuur-en Bosonderzoek.

    Google Scholar 

  • Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–750.

    Google Scholar 

  • VMM (2007). ‘Zure regen’ in Vlaanderen, Depositiemeetnet verzuring 2005–2006.

  • Wilson, E. J., & Tiley, C. (1998). Foliar uptake of wet-deposited nitrogen by Norway spruce: an experiment using N-15. Atmospheric Environment, 32, 513–518.

    Article  CAS  Google Scholar 

  • Wuyts, K., De Schrijver, A., Staelens, J., Gielis, M., Geudens, G., & Verheyen, K. (2008). Patterns of throughfall deposition along a transect in forest edges of silver birch and Corsican pine. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 38, 449–461.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge L. Willems, G. De bruyn, K. Van Nieuland, J. Vermeulen, K. Ceunen and A. De Mey for field and laboratory assistance. The first and sixth authors are granted a Ph.D. fellowship by the Research Foundation—Flanders (FWO) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), respectively. The second and fourth authors are funded as postdoctoral fellows of FWO and the third author as postdoctoral fellow of the Special Research Fund of Ghent University (BOF). The seventh author is funded by the Flemish institute for support of Scientific-Technologic Research in Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Adriaenssens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adriaenssens, S., Staelens, J., Wuyts, K. et al. Foliar Nitrogen Uptake from Wet Deposition and the Relation with Leaf Wettability and Water Storage Capacity. Water Air Soil Pollut 219, 43–57 (2011). https://doi.org/10.1007/s11270-010-0682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0682-8

Keywords

Navigation