Skip to main content

Advertisement

Log in

Impacts of Industrial Polluters on Bryophytes: a Meta-analysis of Observational Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Identifying the factors responsible for the diversity of responses of biota to industrial pollution is crucial for predicting the fates of polluted ecosystems. A meta-analysis based on 49 field studies conducted around 47 point polluters demonstrated that the individual (growth and reproduction) and community (abundance and species richness) characteristics of bryophytes in polluted habitats are reduced to about a half of the values observed in unpolluted sites. Non-ferrous smelters cause a stronger reduction in species richness and larger changes in species composition than other types of polluters. The magnitudes of the effects of pollution on the abundances of individual bryophyte species are not linked with their taxonomic position, life form or Ellenberg indicator values for light, moisture and nitrogen. The variation in species’ responses to pollution is mostly explained by differences in their reproductive characteristics; bryophyte species that possess special forms of vegetative reproduction and those that produce abundant sporophytes are more successful in polluted habitats. Ranking of bryophyte species according to their sensitivity to pollution is independent of the type of the polluter. Changes in bryophyte cover follow changes in tree cover, but not changes in the cover of the vascular field layer in the same pollution gradients. Pollution impacts cause stronger adverse effects on bryophytes in warmer climates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Archibold, O. W. (1978). Vegetation recovery following pollution control at Trail, British Columbia. Canadian Journal of Botany, 56, 1625–1637.

    Article  Google Scholar 

  • Bako, S. P., & Afolabi, S. (2008). Spatial distribution and heavy metal content of some bryophytes and lichens in relation to air pollution in Nigeria’s Guinea Savanna. International Journal of Environment and Pollution, 33, 195–206.

    Article  CAS  Google Scholar 

  • Barcan, V. (2002). Leaching of nickel and copper from soil contaminated by metallurgical dust. Environment International, 28, 63–68.

    Article  CAS  Google Scholar 

  • Bardat, J., & Aubert, M. (2007). Impact of forest management on the diversity of corticolous bryophyte assemblages in temperate forests. Biological Conservation, 139, 47–66.

    Article  Google Scholar 

  • Beckett, P. J. (1986). Pohlia moss tolerance to the acidic, meta-contaminated substrate of the Sudbury, Ontario, Canada, mining and smelting region. In W. H. O. Ernst (Ed.), Environmental contamination. Second international conference, Amsterdam, September 1986 (pp. 30–32). Edinburgh: CEP Consultants.

    Google Scholar 

  • Bergamini, A., Pauli, D., Peintinger, M., & Schmid, B. (2001). Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. Journal of Ecology, 89, 920–929.

    Article  Google Scholar 

  • Beringer, J., Lynch, A. H., Chapin, F. S., Mack, M., & Bonan, G. B. (2001). The representation of arctic soils in the land surface model: The importance of mosses. Journal of Climate, 14, 3324–3335.

    Article  Google Scholar 

  • Brunialti, G., Frati, L., Aleffi, M., Marignani, M., Rosati, L., Burrascano, S., et al. (2010). Lichens and bryophytes as indicators of old-growth features in Mediterranean forests. Plant Biosystems, 144, 221–233.

    Google Scholar 

  • Burton, M. A. S. (1990). Terrestrial and aquatic bryophytes as monitors of environmental contaminants in urban and industrial habitats. Botanical Journal of the Linnean Society, 104, 267–280.

    Article  Google Scholar 

  • Caners, R. T., Macdonald, S. E., & Belland, R. J. (2010). Responses of boreal epiphytic bryophytes to different levels of partial canopy harvest. Botany, 88, 315–328.

    Article  Google Scholar 

  • Corrales, A., Duque, A., Uribe, J., & Londono, V. (2010). Abundance and diversity patterns of terrestrial bryophyte species in secondary and planted montane forests in the northern portion of the Central Cordillera of Colombia. Bryologist, 113, 8–21.

    Article  Google Scholar 

  • Dąbrowski, J., Seniczak, S., Dąbrowska, B., Hermann, J., & Lipnicki, L. (1997a). The arboreal mites (Acari) and epiphytes of young Scots pine forests, in the region polluted by a cement and lime factory ‘Kujawy’ at Bielawy. Akademia Techniczno-Rolnicza im. Jana i Jędrzeja Śniadeckich w Bydgoszczy: Zeszyty Naukowe (Ochrona Srodowiska 1), 208, 71–82.

    Google Scholar 

  • Dąbrowski, J., Seniczak, S., Dąbrowska, B., Lipnicki, L., & Paczuska, B. (1997b). The arboreal mites (Acari) and epiphytes of young Scots pine forests in the region polluted by the ‘Wistom’ chemical factory. Akademia Techniczno-Rolnicza im. Jana i Jędrzeja Śniadeckich w Bydgoszczy: Zeszyty Naukowe (Zootechnika 29), 210, 67–78.

    Google Scholar 

  • Denayer, F. O., Van Haluwyn, C., de Foucault, B., Schumacker, R., & Colein, P. (1999). Use of bryological communities as a diagnostic tool of heavy metal soil contamination (Cd, Pb, Zn) in northern France. Plant Ecology, 140, 191–201.

    Article  Google Scholar 

  • During, H. J. (1992). Ecological classifications of bryophytes and lichens. In J. W. Bates & A. M. Farmer (Eds.), Bryophytes and lichens in a changing environment (pp. 1–31). Oxford: Oxford University Press.

    Google Scholar 

  • During, H. J. (2007). Relations between clonal growth, reproduction and breeding system in the bryophytes of Belgium and The Netherlands. Nova Hedwigia, 131, 133–145.

    Google Scholar 

  • Fabure, J., Meyer, C., Denayer, F., Gaundry, A., Gilbert, D., & Bernard, N. (2010). Accumulation capacities of particulate matter in an acrocarpous and pleurocarpous moss exposed at three differently polluted sites (industrial, urban and rural). Water, Air, and Soil Pollution, 212, 205–217.

    Article  CAS  Google Scholar 

  • FAO (2006). New_LocClim, Local Climate Estimator Version 1.10. Rome: Environment and Natural Resources Service—Agrometeorology Group, FAO/SDRN. ftp://ext-ftp.fao.org/SD/SDR/Agromet/New_LocClim/.

  • Fenton, N. J., & Bergeron, Y. (2006). Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. Journal of Vegetation Science, 17, 65–76.

    Article  Google Scholar 

  • Folkeson, L. (1985). Depauperation of the moss and lichen vegetation in a forest polluted by copper and zinc. In E. Klimo & R. Saly (Eds.), Air pollution and stability of coniferous forest ecosystems. International symposium (pp. 297–307). Brno: University of Agriculture.

    Google Scholar 

  • Forman, R. T. T. (1969). Comparison of coverage, biomass, and energy as measures of standing crop of bryophytes in various ecosystems. Bulletin of the Torrey Botanical Club, 96, 582–591.

    Article  Google Scholar 

  • Fowler, D., Cape, J. N., Coyle, M., Flechard, C., Kuylenstierna, J., Hicks, K., et al. (1999). The global exposure of forests to air pollutants. Water, Air, and Soil Pollution, 116, 5–32.

    Article  CAS  Google Scholar 

  • Freedman, B. (1989). Environmental ecology. San Diego: Academic.

    Google Scholar 

  • Gignac, L. D. (1987). Distribution of bryophytes on peatlands contaminated by metals in the vicinity of Sudbury, Ontario, Canada. Cryptogamie Bryologie Lichénologie, 8, 339–351.

    Google Scholar 

  • Gilbert, O. L. (1968). Bryophytes as indicators of air pollution in Tyne valley. The New Phytologist, 67, 15–30.

    Article  Google Scholar 

  • Gilbert, O. L. (1970). Further studies on effect of sulphur dioxide on lichens and bryophytes. The New Phytologist, 69, 605–627.

    Google Scholar 

  • Gilbert, O. L. (1971). Urban bryophyte communities in north-east England. Transactions of the British Bryological Society, 6, 306–316.

    Google Scholar 

  • González-Miqueo, L., Elustondo, D., Lasheras, E., & Santamaría, J. M. (2010). Use of native mosses as biomonitors of heavy metals and nitrogen deposition in the surroundings of two steel works. Chemosphere, 78, 965–971.

    Article  Google Scholar 

  • Gornall, J. L., Jónsdóttir, I. S., Woodin, S. J., & Van der Wal, R. (2007). Arctic mosses govern below-ground environment and ecosystem processes. Oecologia, 153, 931–941.

    Article  CAS  Google Scholar 

  • Gurevitch, J., & Hedges, L. V. (2001). Meta-analysis. Combining the results of independent experiments. In S. M. Schneider & J. Gurevitch (Eds.), Design and analysis of ecological experiments (pp. 347–369). Oxford: Oxford University Press.

    Google Scholar 

  • Heinken, T., & Zippel, E. (2004). Natural re-colonization of experimental gaps by terricolous bryophytes in Central European pine forests. Nova Hedwigia, 79, 329–351.

    Article  Google Scholar 

  • Hill, M. O., Preston, C. D., Bosanquet, S. D. S., & Roy, D. B. (2007). BRYOATT. Attributes of British and Irish mosses, liverworts and hornworts. Huntingdon: Centre for Ecology and Hydrology.

    Google Scholar 

  • Huttunen, S. (2003). Reproduction of the mosses Pleurozium schreberi and Pohlia nutans in the surroundings of copper smelters at Harjavalta, SW Finland. Journal of Bryology, 25, 41–47.

    Article  Google Scholar 

  • Hynninen, V. (1986). Monitoring of airborne metal pollution with moss bags near an industrial source at Harjavalta, southwest Finland. Annales Botanici Fennici, 23, 83–90.

    CAS  Google Scholar 

  • Jules, E. S., & Shaw, A. J. (1994). Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus—vegetative growth and reproductive expression. American Journal of Botany, 81, 791–797.

    Article  Google Scholar 

  • Kozlov, M. V. (2004). Silviculture in polluted areas. In J. Burley, J. Evans, & J. A. Youngquist (Eds.), Encyclopedia of forest science (pp. 1112–1121). London: Elsevier.

    Chapter  Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2003). Impact of industrial polluters on terrestrial ecosystems: A research synthesis. In J. O. Honkanen & P. S. Koponen (Eds.), Sixth Finnish conference of environmental sciences: proceedings (pp. 72–75). Joensuu: Finnish Society for Environmental Sciences & University of Joensuu.

    Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2007). Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Reviews in Environmental Science & Biotechnology, 6, 231–259.

    Article  CAS  Google Scholar 

  • Kozlov, M. V., & Zvereva, E. L. (2009). Research, publication, and dissemination biases in observational studies of pollution impact on terrestrial biota. In K. Vakkilainen & V. Pukkila (Eds.), Proceedings of FCES-09 Finnish conference of environmental science. 14–15 May 2009, Lahti, Finland (pp. 23–26). Lahti: Finnish Society for Environmental Sciences & University of Lahti.

    Google Scholar 

  • Kozlov, M. V. & Zvereva, E. L. (2010). A second life for old data: global patterns in pollution ecology revealed from published observational studies. Environmental Pollution. doi:10.1016/j.envpol.2010.10.028.

  • Kozlov, M. V., Zvereva, E. L., & Zverev, V. E. (2009). Impacts of point polluters on terrestrial biota: Comparative analysis of 18 contaminated areas. Dordrecht: Springer.

    Book  Google Scholar 

  • Krommer, V., Zechmeister, H. G., Roder, I., Scharf, S., & Hanus-Illnar, A. (2007). Monitoring atmospheric pollutants in the biosphere reserve Wienerwald by a combined approach of biomonitoring methods and technical measurements. Chemosphere, 67, 1956–1966.

    Article  CAS  Google Scholar 

  • LeBlanc, F., & Rao, D. N. (1974). Review of literature on bryophytes with respect to air pollution. Bulletin de la Société Botanique de France, 121, 237–255.

    Google Scholar 

  • Lepp, N. W., & Salmon, D. (1999). A field study of the ecotoxicology of copper to bryophytes. Environmental Pollution, 106, 153–156.

    Article  CAS  Google Scholar 

  • Longton, R. E. (1992). Reproduction and rarity in British mosses. Biological Conservation, 59, 89–98.

    Article  Google Scholar 

  • Man, R., Kayahara, G. J., Rice, J. A., & MacDonald, G. B. (2008). Eleven-year responses of a boreal mixedwood stand to partial harvesting: Light, vegetation, and regeneration dynamics. Forest Ecology and Management, 255, 697–706.

    Article  Google Scholar 

  • Márialigeti, S., Németh, B., Tinya, F., & Ódor, P. (2009). The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests. Biodiversity and Conservation, 18, 2223–2241.

    Article  Google Scholar 

  • Mills, S. E., & Macdonald, S. E. (2005). Factors influencing bryophyte assemblage at different scales in the western Canadian boreal forest. Bryologist, 108, 86–100.

    Article  Google Scholar 

  • Møller, A. P., & Jennions, M. D. (2001). Testing and adjusting for publication bias. Trends in Ecology & Evolution, 16, 580–586.

    Article  Google Scholar 

  • Nash, T. H., & Nash, E. H. (1974). Sensitivity of mosses to sulfur dioxide. Oecologia, 17, 257–263.

    Article  Google Scholar 

  • Nordhorn-Richter, G. (1982). Bryophytes with asexual reproduction—their ability to succeed in an industrial area. Oecologia, 54, 398–400.

    Article  Google Scholar 

  • O’Donnell, J. A., Turetsky, M. R., Harden, J. W., Manies, K. L., Pruett, L. E., Shetler, G., et al. (2009). Interactive effects of fire, soil climate, and moss on CO2 fluxes in black spruce ecosystems of interior Alaska. Ecosystems, 12, 57–72.

    Article  Google Scholar 

  • Oechel, W. C., & Sveinbjornsson, B. (1978). Primary production processes in Arctic bryophytes at Barrow, Alaska. In L. L. Tieszen (Ed.), Vegetation and production ecology of an Alaskan arctic tundra (pp. 269–298). New York: Springer.

    Google Scholar 

  • Onianwa, P. C. (2001). Monitoring atmospheric metal pollution: A review of the use of mosses as indicators. Environmental Monitoring and Assessment, 71, 13–50.

    Article  CAS  Google Scholar 

  • Ranft, H., & Dässler, H.-G. (1972). Zur Rauhempfindlichkeit von Flechen und Moosen und ihrer Verwendung als Testpflanzen. Archiv für Naturschutz und Landschaftsforschung, 112, 189–202.

    Google Scholar 

  • Rao, D. N. (1982). Responses of bryophytes to air pollution. In A. J. E. Smith (Ed.), Bryophyte ecology (pp. 445–471). London: Chapman and Hall.

    Google Scholar 

  • Richardson, D. H. S. (1981). The biology of mosses. Oxford: Blackwell.

    Google Scholar 

  • Roberts, B. A., Thompson, L. K., & Sidhu, S. S. (1979). Terrestrial bryophytes as indicators of fluoride emission from a phosphorus plant, Long-Harbour, Newfoundland, Canada. Canadian Journal of Botany, 57, 1583–1590.

    Article  CAS  Google Scholar 

  • Rosenberg, M. S., Adams, D. C., & Gurevitch, J. (2000). MetaWin: Statistical software for meta-analysis, version 2.0. Sunderland: Sinauer.

    Google Scholar 

  • Ruokolainen, L., & Salo, K. (2006). The succession of boreal forest vegetation during ten years after slash-burning in Koli National Park, eastern Finland. Annales Botanici Fennici, 43, 363–378.

    Google Scholar 

  • Ruotsalainen, A. L., & Kozlov, M. V. (2006). Fungi and air pollution: Is there a general pattern? In D. Rhodes (Ed.), New topics in environmental research (pp. 57–103). Hauppauge: Nova Science.

    Google Scholar 

  • Salemaa, M., Vanha-Majamaa, I., & Derome, J. (2001). Understorey vegetation along a heavy-metal pollution gradient in SW Finland. Environmental Pollution, 112, 339–350.

    Article  CAS  Google Scholar 

  • SAS Institute. (2009). SAS/Stat. User’s guide, version 9.2. Cary: SAS Institute.

    Google Scholar 

  • Smith, A. J. E. (1978). The moss flora of Britain and Ireland. Cambridge: Cambridge University Press.

    Google Scholar 

  • Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., Fernandez, P. G., et al. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. Forest Ecology and Management, 258, 1735–1750.

    Article  Google Scholar 

  • Stringer, P. W., & LaRoi, G. H. (1970). The Douglas-fir forests of Banff and Jasper National Parks, Canada. Canadian Journal of Botany, 48, 1703–1736.

    Article  Google Scholar 

  • Taoda, H. (1972). Mapping of atmospheric pollution in Tokyo based upon epiphytic bryophytes. Japanese Journal of Ecology, 22, 125–133.

    Google Scholar 

  • Taylor, G. E., Johnson, D. W., & Andersen, C. P. (1994). Air pollution and forest ecosystems—a regional to global perspective. Ecological Applications, 4, 662–689.

    Article  Google Scholar 

  • Tipping, E., Woof, C., Rigg, E., Harrison, A. F., Ineson, P., Taylor, K., et al. (1999). Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environment International, 25, 83–95.

    Article  CAS  Google Scholar 

  • Tyler, G. (1978). Leaching rates of heavy metal ions in forest soil. Water, Air, and Soil Pollution, 9, 137–148.

    Article  CAS  Google Scholar 

  • Tyler, G. (1990). Bryophytes and heavy metals—a literature review. Botanical Journal of the Linnean Society, 104, 231–253.

    Article  Google Scholar 

  • Vanderpoorten, A., & Goffinet, B. (2009). Introduction to bryophytes. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Virtanen, R., Johnston, A. E., Crawley, M. J., & Edwards, G. R. (2000). Bryophyte biomass and species richness on the Park Grass experiment, Rothamsted, UK. Plant Ecology, 151, 129–141.

    Article  Google Scholar 

  • Winner, W. E., & Bewley, J. D. (1978). Contrasts between bryophyte and vascular plant synecological responses in an SO2-stressed white spruce association in Central Alberta. Oecologia, 33, 311–325.

    Article  Google Scholar 

  • Woodward, S. (2003). Biomes of Earth: Terrestrial, aquatic, and human-dominated. London: Greenwood.

    Google Scholar 

  • Zechmeister, H. G., Dirnbock, T., Hulber, K., & Mirtl, M. (2007). Assessing airborne pollution effects on bryophytes—lessons learned through long-term integrated monitoring in Austria. Environmental Pollution, 147, 696–705.

    Article  CAS  Google Scholar 

  • Zvereva, E. L., & Kozlov, M. V. (2010). Responses of terrestrial arthropods to air pollution: A meta-analysis. Environmental Science and Pollution Research, 17, 297–311.

    Article  CAS  Google Scholar 

  • Zvereva, E. L., Toivonen, E., & Kozlov, M. V. (2008). Changes in species richness of vascular plants under the impact of air pollution: A global perspective. Global Ecology and Biogeography, 17, 305–319.

    Article  Google Scholar 

  • Zvereva, E. L., Roitto, M. & Kozlov, M. V. (2010). Growth and reproduction of vascular plants under pollution impact: A synthesis of existing knowledge. Environmental Reviews, 18, 355–367.

    Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Maj and Tor Nessling Foundation, the Turku University Foundation and the Academy of Finland (project numbers 122133, 124152, 209219, 211734 and 215598). We give special thanks to Dr. Allan Fife for the permission to use his unpublished thesis, to Dr. Mark O. Hill for the additional information concerning the BRYOATT database, to Dr. Heinjo During for the fruitful discussion and to anonymous reviewer for the inspiring criticism of an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena L. Zvereva.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Online resource 1

Characteristics of the polluters considered in the meta-analysis (DOC 160 KB)

Online resource 2

Summary of the database used in the meta-analysis (DOC 134 KB)

Online resource 3

List of bryophyte species used in meta-analysis (DOC 33.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zvereva, E.L., Kozlov, M.V. Impacts of Industrial Polluters on Bryophytes: a Meta-analysis of Observational Studies. Water Air Soil Pollut 218, 573–586 (2011). https://doi.org/10.1007/s11270-010-0669-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0669-5

Keywords

Navigation