Skip to main content

Advertisement

Log in

Interactive Effects of Fire, Soil Climate, and Moss on CO2 Fluxes in Black Spruce Ecosystems of Interior Alaska

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aerts R, Verhoeven JTA, Whigham D. 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80: 2170–81

    Google Scholar 

  • Balshi MS, McGuire AD, Zhuang Q, Melillo JM, Kicklighter DW, Kasischke ES, Wirth C, Flannigan M, Harden JW, Clein JS, Burnside T, McAllister J, Kurz W, Apps M, Shvidenko A. 2007. The role of fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J Geophys Res-Biogeosci 112:G02029, doi:10.1029/2006JG000380

  • Barney RJ, Van Cleve K. 1973. Black spruce fuel weights and biomass in two interior Alaska stands. Can J For Res 3: 304–11

    Article  Google Scholar 

  • Belyea LR. 1996. Separating the effect of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77: 529–39

    Article  Google Scholar 

  • Bonan GB, Shugart HH. 1989. Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20: 1–28

    Article  Google Scholar 

  • Bond-Lamberty B, Peckham SD, Ahl DE, Gower ST. 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Burke RA, Zepp RG, Tarr MA, Miller WL, Stocks BJ. 1997. Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites. J Geophys Res 102: 29289–300

    Article  CAS  Google Scholar 

  • Burn CR. 1998. The response (1958–1997) of permafrost and near-surface ground temperatures to forest fire, Takhini River valley, southern Yukon Territory. Can J Earth Sci 35: 184–99

    Article  Google Scholar 

  • Busby JR, Whitfield WA. 1978. Water potential, water content, and net assimilation of some boreal forest mosses. Can J Bot 56: 1551–8

    Article  Google Scholar 

  • Carrasco JJ, Neff JC, Harden JW. 2006. Modeling physical and biogeochemical controls over carbon accumulation in a boreal forest soil. J Geophys Res 111: G02004, doi:1029/2005JG000087

    Article  CAS  Google Scholar 

  • Certini G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143: 1–10

    Article  PubMed  Google Scholar 

  • Chambers SD, Chapin FS. 2002. Fire effects on surface-atmosphere energy exchange in Alaskan black spruce ecosystems: implications for feedbacks to regional climate. J Geophys Res-Atmos 108: 8145, doi:10.1029/2001JD000530

    Article  Google Scholar 

  • Chapin III FS, Woodwell GM, Randerson JT, Lovett GM, Rastetter EB, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, Aber JD, Cole JJ, Goulden ML, Harden JW, Heimann M, Howarth RW, Matson PA, McGuire AD, Melillo JM, Mooney HA, Neff JC, Houghton RA, Pace ML, Ryan MG, Running SW, Sala OE, Schlesinger WH, Schulze E-D. 2006. Reconciling carbon-cycle concepts, terminology, and methodology. Ecosystems 9: 1041–50

    Article  CAS  Google Scholar 

  • Clow G. 2006. USGS polar temperature logging system, description and measurement uncertainties, USGS Open File Report, 1–32

  • Clymo RS. 1984. The limits to peat bog growth. Philos Trans R Soc Lond B Biol Sci 303: 605–54

    Article  Google Scholar 

  • Committee, C.A.S.C. 1998. The Canadian system of soil classification. Ontario (Canada): NRC Canada Research Press. p 187

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408: 184–7

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, Janssens IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–73

    Article  PubMed  CAS  Google Scholar 

  • Debano LF. 2000. The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231–232: 195–206

    Article  Google Scholar 

  • Debano LF, Krammes JS. 1966. Water repellent soils and their relation to wildfire temperatures. Int Assoc Sci Hydrol Bull 11: 14–9

    Google Scholar 

  • DeLuca TH, Aplet GH. 2008. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ 6: 1–7

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J. 1994. Carbon pools and flux in global forest ecosystems. Science 263: 185–90

    Article  PubMed  CAS  Google Scholar 

  • Doerr SH, Dekker LW, Ritsema CJ, Shakesby RA, Bryant R. 2002. Water repellency of soils: the influence of ambient relative humidity. Soil Sci Soc Am J 66: 401–5

    CAS  Google Scholar 

  • Dyrness CT. 1982. Control of depth to permafrost and soil temperature by the forest floor in black spruce/feathermoss communities. Research Note PNW-396. Portland (OR): U.S. Department of Agriculture Forest Service. 19 p

  • Forbes MS, Raison RJ, Skjemstad JO. 2006. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Sci Total Environ 370: 190–206

    Article  PubMed  CAS  Google Scholar 

  • Fritze H, Smolander A, Levula T, Kitunen V, Malkonen E. 1994. Wood-ash fertilization and fire treatments in a Scots pine forest stand: effects on the organic layer, microbial biomass, and microbial activity. Biol Fertil Soils 17: 57–63

    Article  Google Scholar 

  • Goetz SJ, Bunn AG, Fiske GJ, Houghton RA. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc Natl Acad Sci USA 102: 13521–5

    Article  PubMed  CAS  Google Scholar 

  • Gorham E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1: 182–95

    Article  Google Scholar 

  • Goulden ML, Wofsy JG, Harden JW. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279: 214–7

    Article  PubMed  CAS  Google Scholar 

  • Gruber N, Galloway JN. 2008. An earth-system perspective of the global nitrogen cycle. Nature 451:293–6

    Article  PubMed  CAS  Google Scholar 

  • Harden JW, Sundquist ET, Stallard RF, Mark RK. 1992. Dynamics of soil carbon the deglaciation of the Laurentide Ice Sheet. Science 258: 1921–4

    Article  PubMed  CAS  Google Scholar 

  • Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O’Neill KP, Kasischke ES. 2000. The role of fire in the boreal carbon budget. Glob Chang Biol 6 (Suppl 1): 174–84

    Article  Google Scholar 

  • Harden JW, Meier R, Darnel C, Swanson DK, McGuire AD. 2003. Soil drainage and its potential for influencing wildfire in Alaska. Studies in Alaska by the U.S. Geological Survey, U.S. Geological Survey Professional Paper 1678

  • Harden JW, Manies KL, Turetsky MR, Neff JC. 2006. Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska. Glob Chang Biol 12: 2391–403

    Article  Google Scholar 

  • Hart SC, DeLuca TH, Newman GS, MacKenzie MD, Boyle SI. 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manage 220: 166–84

    Article  Google Scholar 

  • Hobbie SE, Schimel JP, Trumbore SE, Randerson JT. 2000. Controls over carbon storage and turnover in high-latitude soils. Glob Chang Biol 6 (Suppl 1): 196–210

    Article  Google Scholar 

  • Imeson AC, Verstraten JM, van Mulligen EJ, Sevink J. 1992. The effects of fire and water repellence on infiltration and runoff under Mediterranean type forest. Catena 19: 345–61

    Article  Google Scholar 

  • Johnson DW, Curtis PS. 2001. Effects of forest management on soil C and N storage: meta analysis. For Ecol Manage 140: 227–38

    Article  Google Scholar 

  • Johnson LC, Damman AWH. 1991. Species-controlled Sphagnum decay on a south Swedish raised bog. Oikos 61: 234–42

    Article  Google Scholar 

  • Kasischke ES, Johnstone JF. 2005. Variation in post-fire organic layer thickness in a black spurce forest complex in interior Alaska and its effects on soil temperature and moisture. Can J For Res 35: 2164–77

    Article  Google Scholar 

  • Kasischke ES, Turetsky MR. 2006. Recent changes in the fire regime across the North American boreal region. Geophys Res Lett 33, doi: 10.1029/2006GL025677

  • Kasischke ES, French NHF, Borgeau-Chavez LL, Christensen NL Jr. 1995. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. J Geophys Res 100: 2941–51

    Article  CAS  Google Scholar 

  • Kasischke ES, O’Neill KP, French NHF, Borgeau-Chavez LL. 2000. Controls on patterns of biomass burning in Alaskan boreal forests. In: Kasischke ES, Stocks BJ (Eds.) Fire, climate change, and carbon cycling in the North American boreal forest. New York: Springer. pp 148–63

    Google Scholar 

  • Klock GO, Helvey JD. 1976. Soil-water trends following wildfire on the Entiat, Experimental Forest. Annual Proceedings Tall Timbers Fire Ecologic Conference 15. p 193–200

  • Kuhlbusch TAJ, Crutzen PJ 1995. Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem Cycles 9: 491–502

    Article  CAS  Google Scholar 

  • Lachenbruch AH. 1959. Periodic heat flow in a stratified medium with application to permafrost problems. US Geol Suvery Bull 1083-A:1–36

    Google Scholar 

  • Liu H, Randerson JT, Lindfors J, Chapin FS. 2005. Changes in the surface energy budget after fire in boreal ecosystems of interior Alaska: an annual perspective. J Geophys Res 110: D13101, doi: 10.1029/2004JD005158

    Article  Google Scholar 

  • McGuire AD, Wirth C, Apps M, Beringer J, Clein J, Epstein H, Kicklighter DW, Bhatti J, Chapin III FS, de Groot B, Efremov D, Eugster W, Fukuda M, Gower T, Hinzman L, Huntley B, Jia GJ, Kasischke E, Melillo J, Romanovsky V, Shvidenko A, Vaganov E, Walker D. 2002. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes. J Veg Sci 13: 301–14

    Article  Google Scholar 

  • Moody JA, Martin DA. 2001. Post-fire rainfall intensity-peak discharge relations for three mountainous watersheds in the western USA. Hydrol Process 15: 2981–93

    Article  Google Scholar 

  • Moore CM, Keeley JE. 2000. Long-term hydrologic response of a forested catchment to prescribed fire. Proceedings of the American Water Resource Association Spring Specialty Conference, Water Resources in Extreme Environments. pp 37–42

  • Neff JC, Hooper DU. 2002. Vegetation and climate controls on potential CO2, DOC and DON production in northern latitude soils. Glob Chang Biol 8: 872–84

    Article  Google Scholar 

  • Neff JC, Harden JW, Gleixner G. 2005. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can J For Res 35: 2178–87

    Article  CAS  Google Scholar 

  • O’Neill KP, Kasischke ES, Richter DD. 2002. Environmental controls on soil CO2 flux following fire in black spruce, white spruce, and aspen stands of interior Alaska. Can J For Res 32: 1525–41

    Article  Google Scholar 

  • O’Neill KP, Kasischke ES, Richter DD. 2003. Seasonal and decadal patterns of soil carbon uptake and emission along an age-sequence of burned black-spruce stands in interior Alaska. J Geophys Res 108: 8155, doi:10.1029/2001JD000443

    Article  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. 1982. Soil carbon pools and world life zones. Nature 298: 156–9

    Article  CAS  Google Scholar 

  • Preston CM, Schmidet MWI. 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration for the boreal region. Biogeosciences 3: 397–400

    Article  CAS  Google Scholar 

  • Randerson JT, Liu H, Flanner MG, Chamber SD, Jin Y, Hess PG, Pfister G, Mack MC, Treseder KK, Welp LR, Chapin FS, Harden JW, Goulden ML, Lyons E, Neff JC, Schuur EAG, Zender CS. 2006. The impact of boreal forest fire on climate warming. Science 314: 1130–2

    Article  PubMed  CAS  Google Scholar 

  • Richter DD, O’Neill KP, Kasischke ES. 2000. Stimulation of soil respiration in burned black spruce (Picea mariana L.) forest ecosystems: a hypothesis. In: Kasischke ES, Stocks BJ (Eds.) Fire, climate change, and carbon cycling in the North American boreal forest. New York: Springer. pp 164–78

    Google Scholar 

  • Rochefort L, Vitt DH, Bayley SE. 1990. Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71: 1986–2000

    Article  Google Scholar 

  • Romanovsky VE, Osterkamp TE. 1995. Interannual variations of the thermal regime of the active layer and near-surface permafrost in Northern Alaska. Permafrost Periglac Process 6: 313–35

    Article  Google Scholar 

  • Sawamoto T, Hatano R, Yajima T, Takahashi K, Isaev AP. 2000. Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci Plant Nutr 46: 31–42

    Google Scholar 

  • Schlentner RE, Van Cleve K. 1985. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can J For Res 15: 97–106

    Article  CAS  Google Scholar 

  • Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenetski KV, Sheng Y. 2004. Siberian peatlands as a net carbon sink and global methane source since the early Holocene. Science 303: 353–6

    Article  PubMed  CAS  Google Scholar 

  • Smithwick EAH, Turner MG, Mack MC, Chapin FS III. 2005. Post-fire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8: 163–81

    Article  CAS  Google Scholar 

  • Staff SS 1998. Keys to soil taxonomy. Blacksburg (VA): Pocahontas Press, Inc., p 599

    Google Scholar 

  • Turetsky MR. 2003. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106: 395–409

    Article  Google Scholar 

  • Turetsky MR. 2004. Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past. Ecosystems 7: 740–50

    Article  CAS  Google Scholar 

  • Turetsky MR, Mack M, Harden J, Manies K. 2005. Terrestrial carbon storage in boreal ecosystems: causes and consequences of spatial heterogeneity. In: Lovett G, Jones C, Turner M, Weathers K, Eds. Proceedings from the 10th Cary Conference Proceedings

  • Van Cleve K, Oliver L, Schlentner R, Viereck LA, Dyrness CT. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Can J For Res 13: 747–67

    Article  Google Scholar 

  • Viereck LA, Dyrness CT, Van Cleve K, Foote MJ. 1983. Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can J For Res 13: 703–20

    Article  Google Scholar 

  • Vogel JG, Valentine DW, Ruess RW. 2005. Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates. Can J For Res 35: 161–74

    Article  CAS  Google Scholar 

  • Waldrop MP, Harden JW. 2008. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan Black Spruce forest. Glob Chang Biol doi:10.1111/j.1365-2486.2008.01661.x

  • Waldrop MP, McColl JG, Powers RF. 2003. Effects of forest postharvest management practices on enzyme activities in decomposing litter. Soil Sci Soc Am J 67: 1250–6

    CAS  Google Scholar 

  • Wang C, Bond-Lamberty B, Gower ST. 2003. Soil surface CO2 flux in a boreal black spruce fire chronosequence. J Geophys Res 108, D3, 8224, doi:10.1029/2001JD000861

  • Watson CL, Letey J. 1970. Indices for characterizing soil-water repellency based upon contact angle-surface tension relationships. Soil Sci Soc Am Proc 34: 841–4

    Article  CAS  Google Scholar 

  • Wickland KP, Neff JC. 2007. Decomposition of soil organic matter from boreal black spruce forest: environmental and chemical controls. Biogeochemistry doi:10.1007/s10533-007-9166-3

  • Wieder RK, Vitt DH, Benscoter BW. 2006. Peatlands and the boreal forest. In: Wieder RK, Vitt DH (Eds.) Boreal peatland ecosystems. Heidelberg: Springer-Verlag. pp 165–94

    Google Scholar 

  • Woo M-K. 1986. Permafrost hydrology in North America. Atmos Ocean 24: 201–34

    Google Scholar 

  • Yoshikawa K, Bolton WR, Romanovsky VE, Fukada M, Hinzman LD. 2003. Impacts of wildfire on the permafrost of the boreal forests of Interior Alaska. J Geophys Res 108: doi:10.1029/2001JD000438

Download references

Acknowledgments

We thank Jamie Hollingsworth for his assistance in the field. We also thank Evan Kane, Mark Waldrop, Mike Waddington, and two anonymous reviewers who provided valuable comments on the manuscript. This research was funded by the United States Geological Survey, the Bonanza Creek LTER (Long-Term Ecological Research) program (funded jointly by NSF grant DEB-0423442 and USGS Forest Service, Pacific Northwest Research Station grant PNW01-JV11261952-231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. O’Donnell.

Additional information

Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research, contributed new method; GS: performed research; JCN: performed research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Donnell, J.A., Turetsky, M.R., Harden, J.W. et al. Interactive Effects of Fire, Soil Climate, and Moss on CO2 Fluxes in Black Spruce Ecosystems of Interior Alaska. Ecosystems 12, 57–72 (2009). https://doi.org/10.1007/s10021-008-9206-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9206-4

Keywords

Navigation