Skip to main content

Advertisement

Log in

An Experimental and Modelling Study of Cu2+ Binding on Humic Acids at Various Solution Conditions. Application of the NICA-Donnan Model

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Humic substances are characterized by a strong binding capacity for both metals and organic pollutants, affecting their mobility and bioavailability. The understanding of the mechanisms of proton and metal binding to humic substances is of fundamental importance in geochemical modelling and prediction of cation speciation in the environment. This work reports results on copper binding on humic acids obtained through a thorough experimental and modelling approach. Two humic acids, a reference purified peat humic acid isolated by the International Humic Substances Society (IHSS) and a humic acid from a Greek soil, were experimentally studied at various pH values (4, 6 and 8), humic acid concentrations (ranging from 20 to 200 mg L−1) and ionic strength (0.1 and 0.01 M NaNO3). The binding of copper to humic acids was determined over wide ranges of copper ion concentrations using a copper ion selective electrode. The copper binding isotherms obtained at different conditions have shown that copper binding is dependent on the pH and ionic strength of the solution and on the concentration of both humic acids. Copper binding experimental data were fitted to non-ideal competitive adsorption NICA-Donnan model and the model parameter values were calculated. Both Cu2+ and CuOH+ species binding to humic acid with different binding affinities were considered. Two sets of the NICA-Donnan parameters have been calculated: one for humic acid concentrations of ≥100 mg L−1and one for humic acid concentration of 20 mg L−1. The meaning of the parameters values for each concentration level is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiken, G. R., McKnight, D. M., Wershaw, R. L., & MacCarthy, P. (1985). Humic substances in soil, sediment, and water. New York: Wiley.

    Google Scholar 

  • Avena, M. J., Vermeer, A. W. P., & Koopal, L. K. (1999). Volume and structure of humic acids studied by viscometry: pH and electrolyte concentration effects. Colloids and Surfaces. A, 151(1–2), 213–224.

    Article  CAS  Google Scholar 

  • Baes, C. F., & Mesmer, R. E. (1976). The hydrolysis of cations. New York: Wiley.

    Google Scholar 

  • Benedetti, M. F., Milne, C. J., Kinniburgh, D. G., Van Riemsdijk, W. H., & Koopal, L. K. (1995). Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environmental Science & Technology, 29(2), 446–457.

    Article  CAS  Google Scholar 

  • Benedetti, M. F., Van Riemsdijk, W. H., & Koopal, L. K. (1996). Humic substances considered as a heterogeneous Donnan Gel phase. Environmental Science & Technology, 30(6), 1805–1813.

    Article  CAS  Google Scholar 

  • Cao, J., Lam, K. C., Dawson, R. W., Liu, W. X., & Tao, S. (2004). The effect of pH, ion strength and reactant content on the complexation of Cu2+ by various natural organic ligands from water and soil in Hong Kong. Chemosphere, 54(4), 507–514.

    Article  CAS  Google Scholar 

  • Christl, I., & Kretzschmar, R. (2001). Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 1. Proton binding. Environmental Science & Technology, 35(12), 2505–2511.

    Article  CAS  Google Scholar 

  • Christl, I., Metzger, A., Heidmann, I., & Kretzschmar, R. (2005). Effect of humic and fulvic acid concentrations and ionic strength on copper and lead binding. Environmental Science & Technology, 39(14), 5319–5326.

    Article  CAS  Google Scholar 

  • Christl, I., Milne, C. J., Kinniburgh, D. G., & Kretzschmar, R. (2001). Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environmental Science & Technology, 35(12), 2512–2517.

    Article  CAS  Google Scholar 

  • Conte, P., & Piccolo, A. (1999). Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environmental Science & Technology, 33(10), 1682–1690.

    Article  CAS  Google Scholar 

  • Cooke, J. D., Hamilton-Taylor, J., & Tipping, E. (2007). On the acid-base properties of humic acid in soil. Environmental Science & Technology, 41(2), 465–470.

    Article  CAS  Google Scholar 

  • Fitch, A., Stevenson, F. J., & Chen, Y. (1986). Complexation of Cu(II) with a soil humic acid: Response characteristics of the Cu(II) ion-selective electrode and ligand concentration effects. Organic Geochemistry, 9(3), 109–116.

    Article  CAS  Google Scholar 

  • Gans, P., & O'Sullivan, B. (2000). GLEE, a new computer program for glass electrode calibration. Talanta, 51(1), 33–37.

    Article  CAS  Google Scholar 

  • Ghosh, K., & Schnitzer, M. (1980). Macromolecular structures of humic substances. Soil Science, 129(5), 266–276.

    Article  CAS  Google Scholar 

  • Gondar, D., Iglesias, A., Lopez, R., Fiol, S., Antelo, J. M., & Arce, F. (2006a). Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog. Chemosphere, 63(1), 82–88.

    Article  CAS  Google Scholar 

  • Gondar, D., Lopez, R., Fiol, S., Antelo, J. M., & Arce, F. (2006b). Cadmium, lead, and copper binding to humic acid and fulvic acid extracted from an ombrotrophic peat bog. Geoderma, 135, 196–203.

    Article  CAS  Google Scholar 

  • Gustafsson, J. P. (2007). Visual MINTEQ. Available at: (http://www.lwr.kth.se/English/OurSoftware/vminteq/). E.P.A. Accessed 29 Oct 2010

  • Hayase, K., & Tsubota, H. (1983). Sedimentary humic acid and fulvic acid as surface active substances. Geochimica et Cosmochimica Acta, 47(5), 947–952.

    Article  CAS  Google Scholar 

  • Hosse, M., & Wilkinson, K. J. (2001). Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of ph and ionic strength. Environmental Science & Technology, 35(21), 4301–4306.

    Article  CAS  Google Scholar 

  • Janos, P., Kruzenecka, S., & Madronova, L. (2008). Acid-base titration curves of solid humic acids. Reactive and Functional Polymers, 68(1), 242–247.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., Milne, C. J., Benedetti, M. F., Pinheiro, J. P., Filius, J., Koopal, L. K. Van, et al. (1996). Metal ion binding by humic acid: application of the NICA-Donnan model. Environmental Science & Technology, 30(5), 1687–1698.

    Article  CAS  Google Scholar 

  • Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces. A, 151(1–2), 147–166.

    Article  CAS  Google Scholar 

  • Koopal, L. K., Saito, T., Pinheiro, J. P., & Riemsdijk, W. H. V. (2005). Ion binding to natural organic matter: General considerations and the NICA-Donnan model. Colloids and Surfaces. A, 265(1–3), 40–54.

    Article  CAS  Google Scholar 

  • Lopez, R., Fiol, S., Antelo, J. M., & Arce, F. (2001). Effect of fulvic acid concentration on modeling electrostatic and heterogeneity effects in proton binding reactions. Analytica Chimica Acta, 434(1), 105–112.

    Article  CAS  Google Scholar 

  • Lopez, R., Fiol, S., Antelo, J. M., & Arce, F. (2003). Analysis of the effect of concentration on the acid-base properties of soil fulvic acid. Conformational changes. Colloids and Surfaces. A, 226(1–3), 1–8.

    Article  CAS  Google Scholar 

  • Milne, C. J., Kinniburgh, D. G., van Riemsdijk, W. H., & Tipping, E. (2003). Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environmental Science & Technology, 37(5), 958–971.

    Article  CAS  Google Scholar 

  • Piccolo, A. (2001). The supramolecular structure of humic substances. Soil Science, 166(11), 810–832.

    Article  CAS  Google Scholar 

  • Piccolo, A., Nardi, S., & Concheri, G. (1996). Micelle-like conformation of humic substances as revealed by size exclusion chromatography. Chemosphere, 33(4), 595–602.

    Article  CAS  Google Scholar 

  • Pinheiro, J. P., Mota, A. M., & Benedetti, M. F. (2000). Effect of aluminum competition on lead and cadmium binding to humic acids at variable ionic strength. Environmental Science & Technology, 34(24), 5137–5143.

    Article  CAS  Google Scholar 

  • Plaza, C., Brunetti, G., Senesi, N., & Polo, A. (2005). Proton binding to humic acids from organic amendments and amended soils by the NICA-Donnan model. Environmental Science & Technology, 39(17), 6692–6697.

    Article  CAS  Google Scholar 

  • Robertson, A. P., & Leckie, J. O. (1999). Acid/base, copper binding, and Cu2+/H + exchange properties of a soil humic acid, an experimental and modeling study. Environmental Science & Technology, 33(5), 786–795.

    Article  CAS  Google Scholar 

  • Schnitzer, M. (1978). Humic Substances: Chemistry and Reactions. In M. Schnitzer & S. U. Khan (Eds.), Soil organic matter (pp. 1–64). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Schnitzer, M., & Khan, S. U. (1972). Humic substances in the environment. New York: Marcel Dekker Inc.

    Google Scholar 

  • Sparks, D. L. (1995). Environmental soil chemistry. San Diego, CA: Academic Press.

    Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry. Genesis, composition, reactions. New York: Wiley.

    Google Scholar 

  • Tan, K. H. (1998). Principles of soil chemistry. New York: Marcel Dekker Inc.

    Google Scholar 

  • Tan, K. H. (2003). Humic matter in soil and the environment. Principles and controversies. New York: Marcel Dekker Inc.

    Book  Google Scholar 

  • Thurman, E. M., & Malcolm, R. L. (1981). Preparative isolation of aquatic humic substances. Environmental Science & Technology, 15(4), 463–466.

    Article  CAS  Google Scholar 

  • Tipping, E. (2002). Cation binding by humic substances. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Tipping, E., & Hurley, M. A. (1992). A unifying model of cation binding by humic substances. Geochimica et Cosmochimica Acta, 56(10), 3627–3641.

    Article  CAS  Google Scholar 

  • Vidali, R. (2009). Interaction Mechanisms of Natural Organic Substances and Soluble Metals (In greek). School of Mining and Metallurgical Engineering. Ph.D. Thesis, National Technical University of Athens. p. 353.

  • Vidali, R., Remoundaki, E., & Tsezos, M. (2009). An experimental and modelling study of humic acid concentration effect on H + binding. Application of the NICA-Donnan model. Journal of Colloid and Interface Science, 339, 330–335.

    Article  CAS  Google Scholar 

  • Weber, T., Allard, T., & Benedetti, M. F. (2006). Iron speciation in interaction with organic matter: modelling and experimental approach. Journal of Geochemical Exploration, 88(1–3), 166–171.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the State Scholarships Foundation (I.K.Y.). Gratitude is expressed to Professor Ioannis Deligianakis and to the Laboratory of Physical Chemistry of Department of Environmental and Natural Resources Management at the University of Ioannina, Greece, for the humic acid (GHA) isolated from a Greek soil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roza Vidali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidali, R., Remoundaki, E. & Tsezos, M. An Experimental and Modelling Study of Cu2+ Binding on Humic Acids at Various Solution Conditions. Application of the NICA-Donnan Model. Water Air Soil Pollut 218, 487–497 (2011). https://doi.org/10.1007/s11270-010-0662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0662-z

Keywords

Navigation