Skip to main content
Log in

Full-Scale Remediation of a Jet Fuel-Contaminated Soil: Assessment of Biodegradation, Volatilization, and Bioavailability

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Here, we addressed biodegradation vs. volatilization processes, and also bioavailability limitations during biopile remediation of soil initially contaminated by more than 5,000 mg/kg of hydrocarbons. In order to select bioremediation strategies, we first conducted a biotreatability study, which included geochemical, textural, and microbiological characterization of the soil matrix. Next, we implemented five bioremediation approaches onsite in real-scale biopiles. In order to monitor hydrocarbon depletion and to distinguish between biological and non-biological processes, we analyzed chemical biomarkers by means of gas chromatography–mass spectrometry. In addition, a comprehensive study of soil grain size and its implications on bioavailability were studied. Furthermore, the evolution of microbial populations was also examined. Two of the strategies implemented in the biopiles (the combination of a slow-release fertilizer and a surfactant, and the use of an oleophilic fertilizer respectively) reduced the soil hydrocarbon content to under 500 mg/kg in 5 months. Additional results from this study indicate that volatilization was the predominant degradation process for light hydrocarbons (below 12 carbon atoms), whereas heavier compounds were mainly biodegraded. However, even in the most favorable situation, a residual concentration of hydrocarbons linked to the finer fraction of the soil was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, M. (1999). Biodegradation and bioremediation (2nd ed.). London: Academic.

    Google Scholar 

  • Bosma, T. N., Middeldorp, P. J., Schraa, G., & Zehnder, A. J. (1997). Mass transfer limitation of biotransformation: Quantifying bioavailability. Environmental Science & Technology, 31, 248–252.

    Article  CAS  Google Scholar 

  • Bragg, J. R., Prince, R. C., Harner, E. J., & Atlas, R. M. (1994). Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature, 368, 413–418.

    Article  CAS  Google Scholar 

  • Chaîneau, C. H., Yepremian, C., Vidalie, J. F., Ducreux, J., & Ballerini, D. (2003). Bioremediation of a crude oil-polluted soil: Biodegradation, leaching and toxicity assessments. Water, Air, and Soil Pollution, 144, 419–440.

    Article  Google Scholar 

  • Chaîneau, C. H., Rougeux, G. C., Yéprémian, C., & Oudot, J. (2005). Effects of nutrient concentration on the biodegradation of crude oil associated microbial populations in the soil. Soil Biology and Biochemistry, 37, 1490–1497.

    Article  Google Scholar 

  • Christopher, W., Kaplan, R., & Christopher, L. (2004). Bacterial succession in a petroleum land treatment unit. Applied and Environmental Microbiology, 70, 1777–1786.

    Article  Google Scholar 

  • DOE/PERF (2002). A Summary of the DOE/PERF (Department of Energy and the Petroleum Environmental Research Forum) Bioremediation Workshop. www.netl.doe.gov/technologies/oilgas/publications/brochures/BioWorkshop_McMillen.pdf. Accessed 20 March 2010.

  • Filler, D. M., Snape, I., & Barnes, D. L. (Eds.). (2008). Bioremediation of petroleum hydrocarbons in cold regions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fingas, M. (1995). A literature review of the physics and predictive modelling of oil spill evaporation. Journal of Hazardous Materials, 42, 157–175.

    Article  CAS  Google Scholar 

  • Franzetti, A., Digennaro, P., Bevilacqua, A., Papacchini, M., & Bestetti, G. (2006). Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere, 62, 1464–1472.

    Article  Google Scholar 

  • Gagni, S., & Camm, D. (2007). Stigmastane and hopanes as conserved biomarkers for estimating oil biodegradation in a former refinery plant-contaminated soil. Chemosphere, 67, 1975–1981.

    Article  CAS  Google Scholar 

  • Gallego, J. R., Loredo, J., Llamas, J. F., Vázquez, F., & Sánchez, J. (2002). Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation, 12, 325–335.

    Article  Google Scholar 

  • Gallego, J. R., González-Rojas, E., Peláez, A. I., Sánchez, J., García-Martínez, M. J., Ortiz, J. E., et al. (2006). Natural attenuation and bioremediation of Prestige fuel oil in Atlantic coasts of Galicia (Spain). Organic Geochemistry, 37, 1869–1884.

    Article  CAS  Google Scholar 

  • Gallego, J. R., García-Martínez, M. J., Llamas, J. F., Belloch, C., Peláez, A. I., & Sánchez, J. (2007). Biodegradation of oil tank bottom sludge using microbial consortia. Biodegradation, 18, 269–281.

    Article  Google Scholar 

  • García-Martínez, M. J., Da Riva, I., Canoira, L., Llamas, J. F., Alcántara, R., & Gallego, J. R. (2006). Photodegradation of polycyclic aromatic hydrocarbons in fossil fuels catalysed by supported TiO2. Applied Catalysis B: Environmental, 67, 279–289.

    Article  Google Scholar 

  • Garrett, P. M., Pickerring, I. J., Haith, C. E., & Prince, R. C. (1998). Photooxidation of crude oils. Environmental Science and Technology, 32, 3719–3723.

    Article  CAS  Google Scholar 

  • Gouda, M. K., Omar, S. H., Chekrouda, Z. A., & Nour, H. M. (2007). Bioremediation of kerosene I: a case study in liquid media. Chemosphere, 69, 1807–1814.

    Article  CAS  Google Scholar 

  • Gouda, M. K., Omar, S. H., Chekrouda, Z. A., & Nour, H. M. (2008). Bioremediation of kerosene II: a case study in contaminated clay (Laboratory and field: scale microcosms). World Journal of Microbiology and Biotechnology, 24, 1451–1460.

    Article  CAS  Google Scholar 

  • Greenwood, P. F., Wibrow, S., Suman, J., & Tibbett, M. (2008). Sequential hydrocarbon biodegradation in a soil from arid coastal Australia, treated with oil under laboratory controlled conditions. Organic Geochemistry, 39, 1336–1346.

    Article  CAS  Google Scholar 

  • Huesemann, M. H. (1994). Guidelines for land-treating petroleum hydrocarbon-contaminated soils. Journal of Soil Contamination, 3, 299–318.

    Article  CAS  Google Scholar 

  • Huesemann, M. H. (1997). Incomplete hydrocarbon biodegradation in contaminated soils: Limitations in bioavailability or inherent recalcitrance? Bioremediation Journal, 1, 27–39.

    Article  CAS  Google Scholar 

  • Irwin, R. J., Van Mouwerik, M., Stevens, L., Seese, M. D., & Basham, W. (1997). Environmental Contaminants Encyclopedia. Kerosene Entry. National Park Service, Water Resources Division, Water Operating Branch. Oakridge Drive, Suite Fort Collins, Colorado 80525. www.nature.nps.gov/hazardssafety/toxic/kerosene.pdf. Accessed 21 March 2010.

  • Jiménez, N., Viñas, M., Sabaté, J., Díez, S., Bayona, J. M., Solanas, A. M., et al. (2006). The Prestige oil spill 2. Enhanced biodegradation of a heavy fuel oil under field conditions by the use of an oleophilic fertilizer. Environmental Science and Technology, 40, 2578–2585.

    Article  Google Scholar 

  • Kim, I. S., Park, J.-S., & Kim, K. W. (2001). Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Applied Geochemistry, 16, 1419–1428.

    Article  CAS  Google Scholar 

  • King, R. B., Long, G. M., & Sheldon, J. K. (1998). Practical environmental bioremediation. The field guide. Boca Raton: Lewis.

    Google Scholar 

  • Lahlou, M., & Ortega-Calvo, J. J. (1999). Bioavailability of labile and desorption-resistant phenanthrene sorbed to montmorillonite clay containing humic fractions. Environmental Toxicology and Chemistry, 18, 2729–2735.

    Article  CAS  Google Scholar 

  • Menéndez-Vega, D., Gallego, J. R., Peláez, A. I., Fernández de Córdoba, G., Moreno, J., Muñoz, D., et al. (2007). In situ bioremediation of soil and groundwater polluted with weathered hydrocarbons. European Journal of Soil Biology, 43, 310–321.

    Article  Google Scholar 

  • Mohn, W. W., Radziminski, C. Z., Fortin, M. C., & Reimer, K. J. (2001). On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Applied and Environmental Microbiology, 57, 242–247.

    CAS  Google Scholar 

  • Namocatcat, J. A., Fanga, J., Barcelona, M. J., Quibuyenb, A. T. O., & Abrajano, T. A. (2003). Trimethylbenzoic acids as metabolite signatures in the biogeochemical evolution of an aquifer contaminated with jet fuel hydrocarbons. Journal of Contaminant Hydrology, 67, 177–194.

    Article  CAS  Google Scholar 

  • Nikolopoulou, M., & Kalogerakis, N. (2008). Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Marine Pollution Bulletin, 56, 1855–1861.

    Article  CAS  Google Scholar 

  • Nocentini, M., Pinelli, D., & Fava, F. (2000). Bioremediation of a soil contaminated by hydrocarbon mixtures: The residual concentration problem. Chemosphere, 41, 1115–1123.

    Article  CAS  Google Scholar 

  • Ortega-Calvo, J. J., Marchenko, A. I., Vorobyov, A. V., & Borovic, R. V. (2003). Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal-tar- and oil-polluted rhizospheres. FEMS Microbiology Ecology, 44, 373–381.

    Article  CAS  Google Scholar 

  • Ortega, J. J., Ball, W. P., Schulin, R., Semple, K. T., & Wick, L. Y. (2007). Bioavailability of pollutants and soil remediation. Journal of Environmental Quality, 36, 1383–1384.

    Article  Google Scholar 

  • Pearl, M., Pruijn, M., & Bovendeur, J. (2006). The application of soil washing to the remediation of contaminated soils. Land Contamination & Reclamation, 14, 713–726.

    Article  Google Scholar 

  • Peters, K. E., & Moldowan, J. M. (2005). The biomarker guide: Interpreting molecular fossils in petroleum and ancient sediments (2nd ed.). New Jersey: Prentice Hall.

    Google Scholar 

  • Pollard, S. J., Whittaker, M., & Risden, G. C. (1999). The fate of heavy oil wastes in soil microcosms I: a performance assessment of biotransformation indices. The Science of the Total Environment, 226, 1–22.

    Article  CAS  Google Scholar 

  • Riser-Roberts, E. (1998). Remediation of petroleum contaminated soils. New York: CRC Lewis.

    Book  Google Scholar 

  • Santas, R., Korda, A., Tenente, A., Buchholz, K., & Santas, P. H. (1999). Mesocosm assays of oil spill bioremediation with oleophilic fertilizers: Inipol, F1 or both? Marine Pollution Bulletin, 38, 44–48.

    Article  CAS  Google Scholar 

  • Semple, K. T., Morris, A. W. J., & Paton, G. I. (2003). Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. European Journal of Soil Science, 54, 809–818.

    Article  CAS  Google Scholar 

  • Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science & Technology, 38, 229–231.

    Article  Google Scholar 

  • Sharma, D., & Reddy, K. R. (2004). Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. New York: Wiley.

    Google Scholar 

  • Snape, I., Ferguson, S. H., Harvey, P. A., & Riddle, M. J. (2006). Investigation of fuel spills in Antarctica. II—Extent of natural attenuation at Casey Station. Chemosphere, 63, 89–98.

    Article  CAS  Google Scholar 

  • Sugiura, K., Ishihara, M., Shimauchi, T., & Harayama, S. (1997). Physicochemical properties and biodegradability of crude oil. Environmental Science & Technology, 31, 45–51.

    Article  CAS  Google Scholar 

  • Trindade, P. V. O., Sobral, L. G., Rizzo, A. C. L., Leite, S. G. F., & Soriano, A. U. (2005). Bioremediation of a weathered and recently oil-contaminated soils from Brazil: A comparison study. Chemosphere, 58, 515–522.

    Article  CAS  Google Scholar 

  • Tzovolou, D. N., Benoit, Y., Haeseler, F., Klint, K. E., & Tsakiroglou, C. D. (2009). Spatial distribution of jet fuel in the vadoze zone of a heterogeneous and fractured soil. Science of The Total Environment, 407, 3044–3054.

    Article  CAS  Google Scholar 

  • Volkering, F., Breure, A. M., & Rulkens, W. H. (1998). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8, 401–417.

    Article  CAS  Google Scholar 

  • Walecka-Hutchison, C., & Walworth, J. L. (2006). Assessment of C:N ratios and water potential for nutrient optimization in diesel bioremediation. Bioremediation Journal, 10, 1–11.

    Article  Google Scholar 

  • Wang, Z. D., & Fingas, M. (2003). Development of oil hydrocarbon fingerprinting and identification techniques. Marine Pollution Bulletin, 47, 423–452.

    Article  CAS  Google Scholar 

  • Yerushalmi, L., Rochleau, S., Cimpoi, R., Sarrazin, M., Sunarah, G., Peisajovich, A., et al. (2003). Enhanced biodegradation of petroleum hydrocarbons in contaminated soil. Bioremediation Journal, 7, 37–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the company EMGRISA (Spain) for financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis R. Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, J.L.R., Sierra, C., Permanyer, A. et al. Full-Scale Remediation of a Jet Fuel-Contaminated Soil: Assessment of Biodegradation, Volatilization, and Bioavailability. Water Air Soil Pollut 217, 197–211 (2011). https://doi.org/10.1007/s11270-010-0579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0579-6

Keywords

Navigation