Skip to main content
Log in

Simulating the Stability of Colloidal Amorphous Iron Oxide in Natural Water

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Considerable uncertainty exists as to whether existing thermodynamic equilibrium solid/water partitioning paradigms can be used to assess the mobility of insoluble manufactured nanomaterials in the aquatic environment. In this work, the traditional Derjaguin–Landau–Verwey–Overbeek theory of colloidal particle stability was examined by using three published expressions for estimating critical coagulation concentrations (CCCs; i.e., the minimum ionic strength needed to induce rapid self-aggregation) via incorporation of diffuse-layer potential estimates obtained from MINTEQA2 geochemical model implementations of an enhanced version of the MIT diffuse-layer model (DLM) and the historical triple-layer model (TLM). Amorphous iron oxide was selected as a test colloid in this assessment and its electrostatic properties were simulated over a pH range of 4 to 10 in 0.7 M seawater, 0.1 M diluted seawater, world average river water, US continental average groundwater and Midwestern US 50th percentile rainwater. Findings from the study included: (1) sources of variation in predictions of the onset of rapid colloidal particle self-aggregation were observed to occur in the following order: aquatic chemistry > selection of DLM vs. TLM diffuse-layer potentials > uncertainties in the Hamaker constant > selection of CCC equation  the distance to the plane of shear (with the DLM), (2) the magnitude of the DLM diffuse-layer potential estimates exceeded that of the TLM estimates, (3) TLM diffuse-layer potential estimates were consistent with a conjecture by Loux and Anderson, Colloids and Surfaces A, 177, 123–131, (2001) that the magnitude of environmental interfacial potentials were likely to be less than RT/F (~25 mV) and DLM estimates were not, and (4) TLM estimates predict that amorphous iron oxide suspensions are likely to be relatively stable only in high pH rainwater; DLM estimates predict relative colloidal iron oxide suspension stability in rainwater and extreme pH river waters. These predictions of rapid aggregation are at least qualitatively in accord with data published in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackler, H. D., French, R. H., & Chiang, Y. M. (1996). Comparison of Hamaker constants for ceramic systems with intervening vacuum or water: from force laws and physical properties. Journal of Colloid and Interface Science, 179, 460–469.

    Article  CAS  Google Scholar 

  • Allison, J. D., Brown, D. S., & Novo-Gradac, K. J. (1991). MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems, Version 3.0 Users manual. Athens: U.S. Environmental Protection Agency. EPA/600/3-91/021.

    Google Scholar 

  • Barnes, A., Sapford, D. J., Dey, M., & Williams, K. P. (2008). Heterogeneous Fe(II) oxidation and zeta potential. Journal of Geochemical Exploration, 100, 192–198.

    Article  Google Scholar 

  • Bergstrom, L. (1997). Hamaker constants of inorganic materials. Advances in Colloid and Interface Science, 70, 125–169.

    Article  CAS  Google Scholar 

  • Borkovec, M. (1997). Origin of the 1-pK and 2-pK models of ionizable water-solid interfaces. Langmuir, 13, 2608–2615.

    Article  CAS  Google Scholar 

  • Crawford, R. J., Harding, I. H., & Mainwaring, D. E. (1996). The zeta potential of iron and chromium hydrous oxides during adsorption and coprecipitation of aqueous heavy metals. Journal of Colloid and Interface Science, 181, 561–570.

    Article  CAS  Google Scholar 

  • Cromieres, L., Moulin, V., Fourest, B., & Giffault, E. (2002). Physico-chemical characterization of the colloidal hematite/water interface: experimentation and modeling. Coll Surfs A, 202, 101–115.

    Article  CAS  Google Scholar 

  • Czigany, S., Flury, M., & Harsh, J. B. (2005). Colloid stability in vadose zone Hanford sediments. Environmental Science & Technology, 39, 1506–1512.

    Article  CAS  Google Scholar 

  • Davis, J. A. (1982). Adsorption of natural dissolved organic matter at the oxide/water interface. Geochimica et Cosmochimica Acta, 46, 2381–2393.

    Article  CAS  Google Scholar 

  • Davis, J. A., & Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface: II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. Journal of Colloid and Interface Science, 67, 90–107.

    Article  CAS  Google Scholar 

  • Davis, J. A., James, R. O., & Leckie, J. O. (1978). Surface ionization and complexation at the oxide/water interface: I. Computation of electrical double layer properties in simple electrolytes. Journal of Colloid and Interface Science, 63, 480–499.

    Article  CAS  Google Scholar 

  • Davis, C. C., Chen, H. W., & Edwards, M. (2002). Modeling silica sorption on iron hydroxide. Environmental Science & Technology, 36, 582–587.

    Article  CAS  Google Scholar 

  • Degueldre, C., Triay, I., Kim, J. I., Vilks, P., Laaksoharju, M., & Miekeley, N. (2000). Groundwater colloid properties: a global approach. Applied Geochemistry, 15, 1043–1051.

    Article  CAS  Google Scholar 

  • Delgado, A. V., Gonzalez-Caballero, F., Hunter, R. J., Koopal, L. K., & Lyklema, J. (2007). Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science, 309, 194–224.

    Article  CAS  Google Scholar 

  • Ding, P., & Pacek, A. W. (2008). Effect of pH on deagglomeration and rheology/mor- phology of aqueous suspensions of goethite nanopowder. Journal of Colloid and Interface Science, 325, 165–172.

    Article  CAS  Google Scholar 

  • Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: hydrous ferric oxide. New York: Wiley.

    Google Scholar 

  • Ellis, R. (1912). Zeitschrift für Physikalische Chemie, 80, 474. Cited in Overbeek, 1980.

    Google Scholar 

  • Evans, D. F., & Wennerstrom, H. (1994). The colloidal domain. New York: Wiley-VCH.

    Google Scholar 

  • Everett, D. H., & Koopal, L. K. (1971). Manual of symbols and terminology for physicochemical quantities and units: Appendix II. Definition, terminology and symbols in colloid and surface chemistry, Part I. Washington: International Union of Pure and Applied Chemistry.

    Google Scholar 

  • Goldberg, S. (2005). Inconsistency in the triple layer model description of ionic strength dependent boron adsorption. Journal of Colloid and Interface Science, 285, 509–517.

    Article  CAS  Google Scholar 

  • Goldberg, S., & Johnston, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234, 204–216.

    Article  CAS  Google Scholar 

  • Gu, B., Schmitt, J., Chen, Z., Liang, L., & McCarthy, J. F. (1991). Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology, 28, 38–46.

    Article  Google Scholar 

  • Hayes, K. F., & Leckie, J. O. (1987). Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science, 115, 448–469.

    Article  Google Scholar 

  • Hayes, K. F., Papelis, C., & Leckie, J. O. (1988). Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science, 155, 717–726.

    Article  Google Scholar 

  • Hayes, K. F., Redden, G., Ela, W., & Leckie, J. O. (1991). Surface complexation models: an evaluation of model parameter estimation using FITEQL and oxide mineral titration data. Journal of Colloid and Interface Science, 142, 448–469.

    Article  CAS  Google Scholar 

  • Hem, J. D. (1970). Study and interpretation of the chemical characteristics of natural water, 2nd Ed., United States Geological Survey Paper 1473, U.S.. Washington: Government Printing Office.

    Google Scholar 

  • Hiemstra, T., & van Riemsdijk, W. H. (1996). A surface structural approach to ion adsorption: The charge distribution (CD) model. Journal of Colloid and Interface Science, 179, 488–508.

    Article  CAS  Google Scholar 

  • Hohl, H., & Stumm, W. (1976). Interaction of Pb2+ with hydrous gamma Al2O3. Journal of Colloid and Interface Science, 55, 281–288.

    Article  CAS  Google Scholar 

  • Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P., & Sticher, H. (1996). Coagulation rate measurments of colloidal particles by simultaneous static and dynamic light scattering. Langmuir, 12, 5541–5549.

    Article  CAS  Google Scholar 

  • Hunter, K. A. (1980). Mircroelectrophoretic properties of natural surface-active organic matter in coastal seawater. Limnology and Oceanography, 25, 807–822.

    Article  CAS  Google Scholar 

  • Hunter, R. J. (1981). Zeta potential in colloid science. London: Academic.

    Google Scholar 

  • Hunter, R. J., & Wright, H. J. L. (1971). The dependence of electrokinetic potential on concentration of electrolyte. Journal of Colloid and Interface Science, 37, 564–580.

    Article  CAS  Google Scholar 

  • Hydrogeologic, Inc. (1999). Diffuse-layer sorption reactions for use with MINTEQA2 for HWIR Metals and Metalloids. Athens: U.S. Environmental Protection Agency.

    Google Scholar 

  • Hydrogeologic, Inc, & Allison Geoscience Consultants, Inc. (1999). MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems, Version 4.0 Users Manual. Athens: U.S. Environmental Protection Agency.

    Google Scholar 

  • James, R. O., & Parks, G. A. (1982). Characterization of aqueous colloids by their electrical double layer and intrinsic surface chemical properties. Surface Colloids Science, 12, 119–216.

    CAS  Google Scholar 

  • Janusz, W. (1999). Electrical double layer at the metal oxide-electrolyte interface. Chapter 4. In J. P. Hsu (Ed.), Interfacial forces and fields. New York: Marcel Dekker.

    Google Scholar 

  • Jenne, E. A. (1998). In E. A. Jenne (Ed.), Adsorption of metals by geomedia: variables, mechanisms, and model applications. New York: Academic.

    Google Scholar 

  • Johnson, P. N., & Amirtharajah, A. (1983). Ferric chloride and alum as single and dual coagulents. Journal of the American Water Works Association, 75, 232–239.

    CAS  Google Scholar 

  • Kruyt, H. R. (1952). Colloid science (1st ed.). New York: Elsevier.

    Google Scholar 

  • Kurosawa, S., & Ueta, S. (2001). Effect of colloids on radionucleide migration for performance assessment of HLW disposal in Japan. Pure and Applied Chemistry, 73, 2027–2037.

    Article  CAS  Google Scholar 

  • Loeb, A. L., Overbeek, J Th G, & Wiersma, P. H. (1961). The electrical double layer around a spherical colloid particle. Cambridge: MIT, Massachusetts Institute of Technology.

    Google Scholar 

  • Lofts, S., & Tipping, E. (1998). An assemblage model for cation binding by natural particulate matter. Geochimica et Cosmochimica Acta, 62, 2609–2625.

    Article  CAS  Google Scholar 

  • Loux, N. T. (2006). Extending the diffuse layer model of surface acidity behavior I. Model development. Chemical Speciation and Bioavailability, 18, 105–116.

    Article  CAS  Google Scholar 

  • Loux, N. T. (2007). An assessment of thermodynamic reaction constants for simulating aqueous environmental monomethylmercury speciation. Chemical Speciation and Bioavailability, 19, 183–196.

    Article  CAS  Google Scholar 

  • Loux, N. T. (2008). Extending the diffuse layer model of surface acidity constant behavior: II. Estimation of intrinsic acidity and electrolyte ion site binding constants. Chemical Speciation and Bioavailability, 20, 161–172.

    Article  CAS  Google Scholar 

  • Loux, N. T., & Anderson, M. A. (2001). Mobile ion activities at charged interfaces. Colloids Surf A, 177, 123–131.

    Article  CAS  Google Scholar 

  • Loux, N. T., & Savage, N. (2008). An assessment of the fate of metal oxide nanomaterials in porous media. Water, Air, and Soil Pollution, 194, 227–241.

    Article  CAS  Google Scholar 

  • Loux, N. T., Brown, D. S., Chafin, C. R., Allison, J. D., & Hassan, S. M. (1989). Chemical speciation and competitive cationic partitioning on a sandy aquifer material. Chemical Speciation and Bioavailability, 1, 111–126.

    CAS  Google Scholar 

  • Loux, N. T., Allison, J. D., Chafin, C. R., & Hassan, S. M. (1991). Carbonate equilibria and groundwater sample collection: implications for estimated subsurface properties in continental North America. International journal of environmental analytical chemistry, 44, 41–53.

    Article  CAS  Google Scholar 

  • Lutzenkirchen, J. (1998). Comparison of 1-pK and 2-pK versions of surface complexation theory by the goodness of fit in describing surface charge data of (Hydr)oxides. Environmental Science & Technology, 32, 3149–3154.

    Article  Google Scholar 

  • Lutzenkirchen, J. (Ed.). (2006). Surface complexation modelling. Amsterdam: Elsevier.

    Google Scholar 

  • Lyklema, J. (1977). Water at interfaces: a colloid chemical approach. J Coll Int Sci, 58, 242–250.

    Article  CAS  Google Scholar 

  • Lyklema, J. (1985). Interfacial electrochemistry of surfaces with biomedical relevance. In J. D. Andrade (Ed.), Surface and interfacial aspects of biomedical polymers, Vol. 1. NY: Plenum.

    Google Scholar 

  • Lyklema, J., van Leeuwen, H. P., & Minor, M. (1999). DLVO-theory, a dynamic re- interpretation. Advances in Colloid and Interface Science, 83, 33–69.

    Article  CAS  Google Scholar 

  • Marlow, B. J., & Rowell, R. L. (1991). Electrophoretic fingerprinting of a single acid site polymer colloid latex. Langmuir, 7, 2970–2980.

    Article  CAS  Google Scholar 

  • Miller, S. E., & Low, P. F. (1990). Characterization of the electrical double layer of montmorillonite. Langmuir, 6, 572–278.

    Article  CAS  Google Scholar 

  • Mosley, L. M., Hunter, K. A., & Ducker, W. A. (2003). Forces between colloid particles in natural waters. Environmental Science & Technology, 37, 3303–3308.

    Article  CAS  Google Scholar 

  • Nowostawska, U., Kim, J. P., & Hunter, K. A. (2008). Aggregation of riverine colloidal iron in estuaries: a new kinetic study using stopped-flow mixing. Marine Chemistry, 110, 205–210.

    Article  CAS  Google Scholar 

  • OECD (2007). Available at: http://caliban.sourceoecd.org/vl=3585203/d=16/nw=1/rpsv/cw/vhosts/oecdjournals/1607310x/v1n1/contp1-1.htp. Accessed 5 June 2007 (OECD Guidelines for the Testing of Chemicals, Section 1: Physical Chemical Properties).

  • Ohshima, H., Healy, T. W., & White, L. R. (1982). Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. Journal of Colloid and Interface Science, 90, 17–26.

    Article  CAS  Google Scholar 

  • Overbeek, J Th G. (1952). Stability of hydrophobic colloids and emulsions. Chapter 8. In H. R. Kruyt (Ed.), Colloid science, Vol. I, irreversible systems. Amsterdam: Elsevier.

    Google Scholar 

  • Overbeek, J Th G. (1980). The rule of Schulze and Hardy. Pure and Applied Chemistry, 52, 1151–1161.

    Article  CAS  Google Scholar 

  • Overbeek, J. (1982). Colloids, a fascinating subject: Introductory lecture, Chapter 1. In J. W. Goodwin (Ed.), Colloidal dispersions. London: Royal Society of Chemistry Special PublicationNo 43.

    Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.

    Article  CAS  Google Scholar 

  • Pope-Reid Associates, Inc. (1985). Report to EPA on STORET data analysis, Env Eng Div, St. Paul, MN.

  • Powis, F. (1915). Zeitschrift für Physikalische Chemie, 89, 186. Cited in Overbeek, 1980.

    Google Scholar 

  • Reerink, H. A., & Overbeek, J Th G. (1954). The rate of coagulation as a measure of the stability of AgI sols. Discussions of the Faraday Society, 18, 74–84.

    Article  CAS  Google Scholar 

  • Ross, S., & Morrison, I. D. (1988). Colloidal systems and interfaces. New York: Wiley.

    Google Scholar 

  • Rothert, J. (1999). Quality Assurance Report, National Atmospheric Deposition Program, 1996 and 1997. National Atmospheric Deposition Program Miscellaneous Publication 188. Champaign: Illinois State Water Survey.

    Google Scholar 

  • Ryan, J. N., & Elimelech, M. (1996). Colloid mobilization and transport in groundwater. Colloids Surfaces, 107, 1–56.

    Article  CAS  Google Scholar 

  • Sahai, N., & Sverjensky, D. A. (1997a). Solvation and electrostatic model for specific electrolyte adsorption. Geochimica et Cosmochimica Acta, 61, 2827–2848.

    Article  CAS  Google Scholar 

  • Sahai, N., & Sverjensky, D. A. (1997b). Evaluation of internally consistent parameters for the triple-layer model by systematic analysis of oxide surface titration data. Geochimica et Cosmochimica Acta, 61, 2801–2826.

    Article  CAS  Google Scholar 

  • Saleh, N., Kim, H. J., Phenrat, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2008). Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349–3355.

    Article  CAS  Google Scholar 

  • Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. The Science of the Total Environment, 123, 63–76.

    Article  Google Scholar 

  • Shaw, D. J. (1992). Introduction to colloid and surface chemistry (4th ed.). Oxford: Butterworth Heinemann.

    Google Scholar 

  • Skousen, J., Hilton, T., & Faulkner, B. (2009). Overview of acid mine drainage treatment with chemicals. West Virginia University Extension Service. Available at: http://www.wvu.edu/~agexten/landrec/chemtrt.htm. Accessed 23 April 2009.

  • Smith, R. W., & Jenne, E. A. (1988). Compilation, evaluation and prediction of Triple Layer Model constants for ions on Fe(III) and Mn(IV) hydrous oxides. Battelle Pacific Northwest Laboratory Report No. PNL-6754/UC-11, Richland, WA.

  • Smith, R. W., & Jenne, E. A. (1991). Recalculation, evaluation and prediction of surface complexation constants for metal adsorption on iron and manganese oxides. Environmental Science & Technology, 25, 525–531.

    Article  CAS  Google Scholar 

  • Sposito, G. (1984). The surface chemistry of soils. New York: Oxford University.

    Google Scholar 

  • Sposito, G., & Grasso, D. (1999). Electrical double layer structure, forces and fields at the clay water interface, Chapter 5. In J. P. Hsu (Ed.), Interfacial forces and fields. NY: Marcel Dekker.

    Google Scholar 

  • Stumm, W., & Morgan, J. J. (1981). Aquatic chemistry, an introduction emphasizing chemical Equilibria in natural waters (2nd ed.). New York: Wiley.

    Google Scholar 

  • Sverjensky, D. A., & Sahai, N. (1996). Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water. Geochimica et Cosmochimica Acta, 60, 3773–3797.

    Article  CAS  Google Scholar 

  • Tipping, E. (1981). The adsorption of aquatic humic substances by iron oxides. Geochimica et Cosmochimica Acta, 45, 191–199.

    Article  CAS  Google Scholar 

  • Tonkin, J. W., Balistrieri, L. S., & Murray, J. W. (2004). Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Applied Geochemistry, 19, 29–53.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. NanoToday, 1, 44–48.

    Google Scholar 

  • US EPA (2007). Available at: http://www.epa.gov/opptsfrs/publications/OPPTS_Harmoni-zed/830_Product_Performance_Test_Guidelines/index.html. Accessed 16 October 2007 (Series 830 Product Performance Test Guidelines—Finals).

  • Utsunomiya, S., Kersting, A. B., & Ewing, R. C. (2009). Groundwater nanoparticles in the far-field at the Nevada test site: mechanism for radionuclide transport. Environmental Science & Technology, 43, 1293–1298.

    Article  CAS  Google Scholar 

  • Van Geen, A., Robertson, A. P., & Leckie, J. O. (1994). Complexation of carbonate species at the goethite surface: implications for adsorption of metal ions in natural waters. Geochimica et Cosmochimica Acta, 58, 2073–2086.

    Article  Google Scholar 

  • Venema, P., Hiemstra, T., & Van Riemsdijk, W. H. (1996). Comparison of different site binding models for cation adsorption: description of pH dependency, salt dependency, and cation-proton exchange. Journal of Colloid and Interface Science, 181, 45–59.

    Article  CAS  Google Scholar 

  • Verwey, E. J. W., & Overbeek, J Th G. (1948). Theory of the stability of lyophobic colloids. New York: Dover.

    Google Scholar 

  • Visser, J. (1972). On Hamaker constants: a comparison between Hamaker constants and Lifshitz-Van der Waals constants. Advances in Colloid and Interface Science, 3, 331–363.

    Article  CAS  Google Scholar 

  • Waite, T. D., Davis, J. A., Payne, T. E., Waychunas, G. A., & Xu, N. (1994). Uranium (VI) adsorption to ferrihydrite: application of a surface complexation model. Geochimica et Cosmochimica Acta, 58, 5465–5478.

    Article  CAS  Google Scholar 

  • Wazne, M., Korfiatis, G. P., & Meng, X. (2003). Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environmental Science & Technology, 37, 3619–3624.

    Article  CAS  Google Scholar 

  • Weng, L., Van Riemsdijk, W. H., & Hiemstra, T. (2008). Humic nanoparticles at the oxide-water interface: interactions with phosphate ion adsorption. Environmental Science & Technology, 42, 8747–8752.

    Article  CAS  Google Scholar 

  • Westall, J., & Hohl, H. (1980). A comparison of electrostatic models for the oxide/solution interface. Advances in Colloid and Interface Science, 12, 265–294.

    Article  CAS  Google Scholar 

  • Wetzel, R. G. (1975). Limnology. Philadelphia: Saunders.

    Google Scholar 

  • Xu, Z., Zhang, Q., & Finch, J. A. (1999). Surface ionization and complexation, Chapter 22. In J. A. Schwarz & C. I. Contescu (Eds.), Surfaces of nanoparticles and porous media. New York: Marcel Dekker.

    Google Scholar 

  • Yates, D. E. (1975). The structure of the oxide/aqueous electrolyte interface, Ph.D. dissertation. Melbourne: University of Melbourne.

    Google Scholar 

  • Yates, D. E., Levine, S., & Healy, T. W. (1974). Site binding model of electrical double layer at oxide-water interface. Journal of the Chemical Society. Faraday Transactions I, 70, 1807–1818.

    Article  CAS  Google Scholar 

  • Zhang, Z. Z., Sparks, D. L., & Scrivner, N. C. (1994). Characterization and modeling of the Al-oxide/aqueous solution interface. Journal of Colloid and Interface Science, 162, 244–251.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chen, Y., Westerhoff, P., Hristovski, K., & Crittenden, J. C. (2008). Stability of commercial metal oxide nanoparticles in water. Water Research, 42, 2204–2212.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge constructive interactions with members of the US EPA OSP OPPTS Manufactured Nanomaterial Physical Chemical Properties Workgroup and Steering Group 4 of the OECD Working Party on Manufactured Nanomaterials. The author also would like to acknowledge the value of constructive input from the reviewers (including Jim Kitchens) of previous work in this area.

Disclaimer

Although the present work was funded by the US Environmental Protection Agency and approved for publication, it does not necessarily represent official agency policy. Mention of commercial products and trade names does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas T. Loux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loux, N.T. Simulating the Stability of Colloidal Amorphous Iron Oxide in Natural Water. Water Air Soil Pollut 217, 157–172 (2011). https://doi.org/10.1007/s11270-010-0576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0576-9

Keywords

Navigation