Skip to main content
Log in

A New Approach to Calculate EMEA’s Predicted Environmental Concentration for Human Pharmaceuticals in Groundwater at Bank Filtration Sites

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In recent years, human pharmaceutical substances have been increasingly detected in the aquatic environment. Specific attention has been drawn to the occurrence of pharmaceutical substances at bank filtration sites which are used for drinking water production. In the course of the authorisation application for new pharmaceutical compounds, an environmental risk assessment is required. Currently, the expected concentration of the human pharmaceutical compound in groundwater at bank filtration sites is calculated following the guideline Pre-Authorisation Evaluation of Medicines for Human Use issued by the European Medicines Agency (EMEA 2006). A simple estimation is applied: The predicted environmental concentration (PECGW) is the predicted environmental concentration in surface water (PECSW) multiplied with 0.25. A new approach considering the hydraulic and hydrogeological characteristics of bank filtration sites as well as transport processes is presented in this study. First, a numerical groundwater flow model was developed to simulate the groundwater flow processes at bank filtration sites in general. Flow times were calculated as a function of the hydraulic and hydrogeological parameters: hydraulic conductivity, shore-well distance, screen depth and extraction rate. In a second step, the PECGW was calculated based on the compound concentration in surface water and the modelled groundwater flow times considering linear sorption and first-order decay. Sorption and degradation can only be calculated based on the data provided by the pharmaceutical company in the course of the authorisation application. The current approach following the EMEA guideline invariably connects the PECGW with the PECSW without considering sorption and/or degradation processes. We introduce an approach that incorporates the hydraulic process bank filtration and the main transport processes sorption and degradation. The new approach is compound specific as well as aquifer, flow and transport specific resulting in a more realistic PECGW value compared to the old approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreozzi, R., Caprio, V., Ciniglia, C., De Champdore, M., Lo Giudice, R., Marotta, R., et al. (2004). Antibiotics in the environment: Occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental Science & Technology, 38(24), 6832–6838.

    Article  CAS  Google Scholar 

  • Doppler, T., Franssen, H. J. H., Kaiser, H. P., Kuhlman, U., & Stauffer, F. (2007). Field evidence of a dynamic leakage coefficient for modelling river–aquifer interactions. Journal of Hydrology, 347(1–2), 177–187.

    Article  Google Scholar 

  • EC. (2001). Community code relating to medicinal products for human use, Directive 2001/83/EC. Brussels: European Commission, European Parliament and Council.

    Google Scholar 

  • Eckert, P., & Irmscher, R. (2004). Modelling of hydrogeochemical processes during bank filtration. In: K. Kovar, Z. Hrkal, & J. Bruthans (Eds.), Proceedings of the international conference on finite element models (pp. 193–196). Karlovy Vary, Czech Republic: Fontainebleau, France, International Association of Hydrologic Sciences.

  • Eckert, P., & Irmscher, R. (2006). Over 130 years of experience with riverbank filtration in Düsseldorf, Germany. Journal of Water Supply: Research and Technology—AQUA, 55(4), 283–291.

    Google Scholar 

  • EMEA. (2006). Guideline on the environmental risk assessment of medicinal products for human use, Doc. Ref. EMEA/CHMP/SWP/4447/00. London: European Medicines Agency.

    Google Scholar 

  • Engelmann, U., & Rohde, S. (2009). Pharmaceutical substances, antibiotics and X-ray contrast media in treated waste water and surface water in the Federal State Saxony (Arzneimittelwirkstoffe, Antibiotika und Röntgenkontrastmittel in Abwassereinleitungen und Oberflächengewässern in Sachsen). KA Korrespondenz Abwasser, Abfall, 56(3), 258–268.

    Google Scholar 

  • Fenz, R., Blaschke, A. P., Clara, M., Kroiss, H., Mascher, D., & Zessner, M. (2005). Monitoring of carbamazepine concentrations in wastewater and groundwater to quantify sewer leakage. Water Science and Technology, 52(5), 205–213.

    CAS  Google Scholar 

  • Fritz, B. (2003). Natural processes with a high efficiency: bank filtration and water recharge (Natürliche Prozesse mit hoher Effizienz: Uferfiltration und Wasseranreicherung). wwt, 10–11, 10–17.

  • Grischek, T. (2003). Management of bank filtration sites at the Elbe River (Zur Bewirtschaftung von Uferfiltratfassungen an der Elbe). Habilitation, Technische Universität Dresden Institut für Grundwasserwirtschaft, Dresden.

  • Halling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lutzhoft, H. C. H., & Jorgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36(2), 357–394.

    Article  CAS  Google Scholar 

  • Hanisch, B., Abbas, B., Kratz, W., & Schüürmann, G. (2004). Human drugs in aquatic ecosystems: approach for the environmental risk assessment of drug residues (Humanarzneimittel im aquatischen Ökosystem: Bewertungsansatz zur Abschätzung des ökotoxikologischen Risikos von Arzneimittelrückständen). Umweltwissenschaften und Schadstoff-Forschung, 16(4), 223–238.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002a). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicology Letters, 131(1–2), 5–17.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002b). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266(3–4), 175–189.

    Article  CAS  Google Scholar 

  • Hiscock, K. M., & Grischek, T. (2002). Attenuation of groundwater pollution by bank filtration. Journal of Hydrology, 266(3–4), 139–144.

    Article  CAS  Google Scholar 

  • HYDOR (2004). Hydrological evaluation of the groundwater resources of the water works Tegel, Spandau, Tiefwerder, Kladow and Beelitzhof in Berlin (Hydrologische Berechnungen zum Nachweis des Grundwasserdargebotes für die Wasserwerke Tegel, Spandau, Tiefwerder, Kladow und Beelitzhof der Berliner Wasserbetriebe). Unpublished report, Berliner Wasserbetriebe, Berlin.

  • HYDOR (2007). Hydrological evaluation of the groundwater resources of the water works Friedrichshagen, Altglienicke, Johannisthal, Wuhlheide, Kaulsdorf und Buch in Berlin (Hydrologische Berechnungen zum Nachweis des Grundwasserdargebotes für die Wasserwerke Friedrichshagen, Altglienicke, Johannisthal, Wuhlheide, Kaulsdorf und Buch der Berliner Wasserbetriebe). Unpublished report, Berliner Wasserbetriebe, Berlin.

  • Kunkel, U., & Radke, M. (2008). Biodegradation of acidic pharmaceuticals in bed sediments: Insight from a laboratory experiment. Environmental Science & Technology, 42(19), 7273–7279.

    Article  CAS  Google Scholar 

  • Lenk, S., Remmler, F., Skark, C., & Schulte-Ebbert, U. (2006). Technical concepts and adjusted operational modes for an optimal adaptation of riverbank filtration to local boundary conditions (Technische Konzepte und abgestimmte Betriebsweisen zur optimalen Anpassung der Uferfiltration an lokale Randbedingungen). Schwerte: Institut für Wasserforschung GmbH Dortmund.

    Google Scholar 

  • Liebig, M., Moltmann, J. F., & Knacker, T. (2006). Evaluation of measured and predicted environmental concentrations of selected human pharmaceuticals and personal care products. Environmental Science and Pollution Research, 13(2), 110–119.

    Article  CAS  Google Scholar 

  • Loeffler, D., Rombke, J., Meller, M., & Ternes, T. A. (2005). Environmental fate of pharmaceuticals in water/sediment systems. Environmental Science & Technology, 39(14), 5209–5218.

    Article  CAS  Google Scholar 

  • Massmann, G., Heberer, T., Grützmacher, G., Dünnbier, U., Knappe, A., Meyer, H., et al. (2007). Drinking-water production in urban environments—bank filtration in Berlin (Trinkwassergewinnung in urbanen Räumen—Erkenntnisse zur Uferfiltration in Berlin). Grundwasser, 12, 232–245.

    Article  CAS  Google Scholar 

  • Massmann, G., Nogeitzig, A., Taute, T., & Pekdeger, A. (2008a). Seasonal and spatial distribution of redox zones during lake bank filtration in Berlin, Germany. Environmental Geology, 54, 53–65.

    Article  CAS  Google Scholar 

  • Massmann, G., Sültenfuß, J., Dünnbier, U., Knappe, A., Taute, T., & Pekdeger, A. (2008b). Investigation of groundwater residence times during bank filtration in Berlin: A multi-tracer approach. Hydrological Processes, 22, 788–801.

    Article  CAS  Google Scholar 

  • OECD. (2000). OECD guidelines for the testing of chemicals/Section 1: Physical–chemical properties test no. 106: Adsorption–desorption using a batch equilibrium method. Paris: Organisation for Economic Co-operation and Development.

    Book  Google Scholar 

  • OECD. (2002). OECD guidelines for the testing of chemicals/Section 3: Degradation and accumulation test no. 308: Aerobic and anaerobic transformation in aquatic sediment systems. Paris: Organisation for Economic Co-operation and Development.

    Book  Google Scholar 

  • Ray, C., Melin, G., & Linsky, R. B. (Eds.). (2002). Riverbank filtration—improving source-water quality. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Scheytt, T., Mersmann, P., & Heberer, T. (2006). Mobility of pharmaceuticals carbamazepine, ibuprofen, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology, 83, 53–69.

    Article  CAS  Google Scholar 

  • Scheytt, T., Mersmann, P., Leidig, M., Pekdeger, A., & Heberer, T. (2004). Transport of pharmaceutically active compounds in saturated laboratory columns. Ground Water, 42(5), 767–773.

    Article  CAS  Google Scholar 

  • Schmidt, C. K., Lange, F. T., & Brauch, H.-J. (2004). Assessing the impact of different redox conditions and residence times on the fate of organic micropollutants during riverbank filtration. In R. Gimbel, N. Graham, & M. R. Collins (Eds.), Recent progress in slow sand and alternative biofiltration processes (pp. 561–569). London: IWA.

    Google Scholar 

  • Schubert, J. (2002). Hydraulic aspects of riverbank filtration—field studies. Journal of Hydrology, 266, 145–161.

    Article  CAS  Google Scholar 

  • von Keutz, E., & Jekat, F.-W. (1998). Toxicological studies in the course of a marketing authorization application for human pharmaceuticals (Toxikologische Untersuchungen im Rahmen der Zulassung von Humanarzneimitteln). In Hessische Landesanstalt für Umwelt (Ed.), Arzneimittel in Gewässern (pp. 65–69). Wiesbaden: Hessische Landesanstalt für Umwelt.

    Google Scholar 

  • Zippel, M., Scheytt, T., Hannappel, S., & Müller, B. (2009). Mathematical transport simulation of pharmaceutical compounds in groundwater during bank filtration (Mathematische Simulation des Eintrages von Arzneimitteln aus Oberflächengewässern in das Grundwasser durch Uferfiltration). In Umweltbundesamt (Ed.), Texte 14/2010 (p. 162). Dessau: Umweltbundesamt.

    Google Scholar 

Download references

Acknowledgement

This work was funded by the German Federal Environment Agency (Umweltbundesamt). We would like to thank the following institutions which provided hydraulic and hydrogeological data on bank filtration sites as well as concentration data of pharmaceutical substances in groundwater: Kompetenzzentrum Wasser Berlin, Stadtwerke Düsseldorf, Hochschule für Technik und Wirtschaft Dresden (FH), Fernwasserversorgung Elbaue-Ostharz GmbH Torgau and Technologiezentrum Wasser (TZW) Karlsruhe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beate Müller.

Additional information

The use of brand names in peer-reviewed papers is for identification purposes only and does not constitute endorsement by the authors and their employers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, B., Scheytt, T., Zippel, M. et al. A New Approach to Calculate EMEA’s Predicted Environmental Concentration for Human Pharmaceuticals in Groundwater at Bank Filtration Sites. Water Air Soil Pollut 217, 67–82 (2011). https://doi.org/10.1007/s11270-010-0568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0568-9

Keywords

Navigation