Skip to main content
Log in

Influence of Different Substrates in Wetland Soils on Denitrification

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Different substrates were evaluated to investigate their effect on nitrate removal and denitrifying bacterial community in soils obtained from wetland. Serial batch kinetic tests were conducted on soils obtained from wetland mixed with glucose and sawdust using KNO3 solution. Column tests were also conducted on soils obtained from wetland mixed with three different substrates (glucose, sawdust, and scoria coated with zero-valent iron) using KNO3 solution. For the batch tests, the nitrate removal efficiency for soil mixed with glucose was comparable to that for soil mixed with sawdust, but the nitrate removal rate for soil mixed with glucose (23.3 NO 3 -N mg/L-d) was approximately eight times higher than that for soil mixed with sawdust (2.8 NO 3 -N mg/L-d). For column tests among soil samples, nitrate removal efficiency was highest in soil mixed with glucose, which is an easily biodegradable carbon source. Removal efficiency increased with increasing incubation time for both soil samples with glucose and sawdust. A phylogenetic analysis based on nitrate reductase gene demonstrated that the different carbon sources affected both the diversity and compositions of the denitrifying bacterial in soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ASTM (2004) Annual Book of Standards. West Conshohocken, Philadelphia.

  • Bedessem, M. E., Edgar, T. V., & Roll, R. (2005). Nitrogen removal in laboratory model leachfields with organic-rich layers. Journal of Environmental Quality, 34, 936–942.

    Article  CAS  Google Scholar 

  • Bertrand, J. L., Ramsay, B. A., Ramsay, J. A., & Chavarie, C. (1990). Biosynthesis of poly-β-hydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Applied and Environmental Microbiology, 56, 3133–3138.

    CAS  Google Scholar 

  • Brettar, I., Sanchez-Perez, J. M., & Trémolières, M. (2002). Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain-correlation with redox potential and organic matter. Hydrobiologia, 469, 11–21.

    Article  CAS  Google Scholar 

  • Bunchell, M. R., II, Skaggs, R. W., Lee, C. R., Broome, S., Chescheir, G. M., & Osborne, J. (2007). Substrate organic matter to improve nitrate removal in surface-flow constructed wetlands. Journal of Environmental Quality, 36, 194–207.

    Article  Google Scholar 

  • Chao, A. (1984). Nonparametric-estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265–270.

    Google Scholar 

  • Chung, J., Kim, S., Jeong, B., & Lee, Y. (2004). Removal of organic matter and nitrogen from river water in a model floodplain. Journal of Environmental Quality, 33, 1017–1023.

    Article  CAS  Google Scholar 

  • Cornwell, J. C., Kemp, W. M., & Kana, T. M. (1999). Denitrification in coastal ecosystems: methods, environmental controls and ecosystem level controls, a review. Aquatic Ecology, 33, 41–54.

    Article  CAS  Google Scholar 

  • Davidsson, T. T., & Stahl, M. (2000). The influence of organic carbon on nitrogen transformations in five wetland soil. Soil Society of American Journal, 64, 1129–1136.

    Article  CAS  Google Scholar 

  • DeLaune, R. D., Jugsujinda, A., Wsest, J. L., Johnson, C. B., & Kongchum, M. A. (2005). Screening of the capacity of Louisiana freshwater wetlands to process nitrate in diverted Mississippi River water. Ecological Engineering, 25, 315–321.

    Article  Google Scholar 

  • Della Rocca, C., Belgiorno, V., & Meriç, S. (2005). Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water S.A., 31, 229–336.

    CAS  Google Scholar 

  • Dinçer, A. R., & Kargi, F. (2000). Kinetics of sequential nitrification and denitrification processes. Enzyme Microbiological Technology, 27, 37–42.

    Article  Google Scholar 

  • Dodla, S. K., Wang, J. J., DeLaune, R. D., & Robert, L. C. (2008). Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. The Science of the Total Environment, 407, 417–480.

    Google Scholar 

  • Foglar, L., Briški, F., Sipos, L., & Vuković, M. (2005). High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresource Technology, 96, 879–888.

    Article  CAS  Google Scholar 

  • Garcia-Montiel, D. C., Melillo, J. M., Steudler, P. A., Cerri, C. C., & Piccolo, M. C. (2003). Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon. Biological Fertile Soils, 38, 267–272.

    Article  CAS  Google Scholar 

  • Gersberg, R. M., Elkins, B. V., & Goldman, C. R. (1983). Nitrogen removal in artificial wetlands. Water Resources, 17, 1009–1014.

    CAS  Google Scholar 

  • Gibert, O., Pomierny, S., Rowe, I., & Kalin, R. M. (2008). Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB). Bioresource Technology, 99, 7587–7596.

    Article  CAS  Google Scholar 

  • Greenan, C. M., Moorman, T. B., Kaspar, T. C., Parkin, T. B., & Jaynes, D. B. (2006). Comparing carbon substrates for denitrification of subsurface drainage water. Journal of Environmental Quality, 35, 824–829.

    Article  CAS  Google Scholar 

  • Hallin, S., Throbäck, I. N., Dicksved, J., & Pell, M. (2006). Metabolic profiles and genetic diversity of denitrifying communities in activated sludge after addition of methanol or ethanol. Applied and Environmental Microbiology, 72, 5445–5452.

    Article  CAS  Google Scholar 

  • Hill, A. R., & Cardaci, M. (2004). Denitrification and organic carbon availability in riparian wetland soils and sub-surface sediments. Soil Science Society of America Journal, 68, 320–325.

    Article  CAS  Google Scholar 

  • Hume, N. P., Fleming, M. S., & Langat, A. J. (2002). Denitrification potential and carbon quality of four aquatic plants in wetland microcosms. Soil Science Society of America Journal, 66, 1706–1712.

    Article  CAS  Google Scholar 

  • Kwon, J., Yun, S., Kim, S., Mayer, B., & Hutcheon, I. (2005). Sorption of Zn(II) in aqueous solutions by scoria. Chemosphere, 60, 1416–1426.

    Article  CAS  Google Scholar 

  • Na, E., & Park, S. (2005). A hydrodynamic modeling study to determine the optimum intake location in Lake Paldang, Korea. Journal of America Water Resource Assocication, 41, 1315–1332.

    Article  Google Scholar 

  • Ovez, B. (2006). Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochemistry, 41, 1289–1295.

    Article  CAS  Google Scholar 

  • Page, R. D. M. (1996). TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences, 12, 357–358.

    CAS  Google Scholar 

  • Patterson, B. M., Grassi, M. E., Davis, G. B., Robertson, B. S., & McKinley, A. J. (2002). Use of polymer mats in series for sequential reactive barrier remediation of ammonium-contaminated groundwater: laboratory column evaluation. Environmental Science & Technology, 36, 3439–3445.

    Article  CAS  Google Scholar 

  • Pavlostalthis, S. G., & Giraldo-Gómez, E. (1991). Kinetics of an aerobic treatment: a critical review. CRC Critical Reviews in Environmental Control, 21, 411–490.

    Article  Google Scholar 

  • Rhodes, J. (1982a). Cation exchange capacity. In A. Page, R. Miller, & D. Keeney (Eds.), Methods of soil analysis, part 2, chemical and microbiological properties (pp. 149–157). Wisconsin: Soil Science Society of America.

    Google Scholar 

  • Rhodes, J. (1982b). Soluble salts. In A. Page, R. Miller, & D. Keeney (Eds.), Methods of soil analysis, part 2, chemical and microbiological properties (pp. 167–179). Wisconsin: Soil Science Society of America.

    Google Scholar 

  • Rivett, M. O., Stephen, S. R., Buss, R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling process. Water Research, 42, 4215–4232.

    Article  CAS  Google Scholar 

  • Robertson, W. D., Blowes, D. W., Ptacek, C. J., & Cherry, J. A. (2000). Long-term of performance of in situ reactive barriers for nitrate remediation. Ground Water, 38, 689–695.

    Article  CAS  Google Scholar 

  • Robins, J. P., Rock, J., Hayes, D. F., & Laquer, F. C. (2000). Nitrate removal for Plate valley, Nebraska synthetic groundwater using a constructed wetland model. Environmental Technology, 21, 653–659.

    Article  CAS  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method—a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  • Schipper, L. A., & Vojvodic-Vukovic, M. (2000). Rates of nitrate removal from groundwater and denitrification in a constructed denitrification wall. Ecological Engineering, 14, 664–648.

    Article  Google Scholar 

  • Schloss, P.D., & Handelsman, J. (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology, 71(3), 1501–1506.

    Google Scholar 

  • Silva, J. A., Tobella, L. M., Becerra, J., Godoy, F., & Martinez, M. A. (2007). Biosynthesis of poly-β-hydroxyalkanoate by Brevundimonas vesicularis LMG P-23615 and Sphingopyxis macrogoltabida LMG 17324 using acid-hydrolyzed sawdust as carbon source. Journal of Bioscience and Bioengineering, 103, 542–546.

    Article  CAS  Google Scholar 

  • Soares, M. I. M. (2000). Biological denitrification of groundwater. Water, Air & Soil Pollution, 123, 183–193.

    Article  CAS  Google Scholar 

  • Su, C., & Puls, R. W. (2006). Removal of added nitrate in cotton burr compost, mulch compost, and peat: mechanisms and potential use for groundwater nitrate remediation. Chemosphere, 66, 91–98.

    Article  Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

    Article  CAS  Google Scholar 

  • van Rijn, J., Tal, Y., & Schreier, H. J. (2006). Denitrification in recirculating systems: theory and applications. Aquacultural Engineering, 34, 364–376.

    Article  Google Scholar 

  • White, J. R., & Reddy, K. R. (2003). Nitrification and denitrification rates of everglades wetland soils along a phosphorous-impacted gradient. Journal of Environmental Quality, 32, 2436–2443.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Midcarrier Researcher Program through NRF grant funded by the MEST (No. R01-2007-20964-0). The opinions and findings reported in this paper are solely those of the authors, with no endorsement by the funding agency implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Young Jo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hien, T.T., Park, HD., Jo, H.Y. et al. Influence of Different Substrates in Wetland Soils on Denitrification. Water Air Soil Pollut 215, 549–560 (2011). https://doi.org/10.1007/s11270-010-0498-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0498-6

Keywords

Navigation