Skip to main content
Log in

Radionuclide Transport in Granitic Rock Considering Multiple-Member Decay Chain: Application of Spent Nuclear Fuel Final Disposal

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Application of one-dimensional transport considering multiple member of decay chain in a single rock fracture has been studied. Input sources for constant, pulse, impulse, Heaviside, and exponential decay have been used to demonstrate the suitability of relevant solutions. It shows that the breakthrough curves of dimensionless concentration for the three-member decay chain for Np-237 and the seven-member chain for Cm-246 can be well presented in the temporal and spatial domains. The analytical solutions of this study can clearly demonstrate the general form of contaminant transport with complete multiple-member decay chain in one-dimensional fractured or porous media of arbitrary analytical input sources without considering the matrix diffusion, which the conceptual model provides an alternative type to demonstrate the fate of radionuclide transport in the geosphere. The solutions are conservatively used to support the performance assessment for disposal site of radioactive waste. An application to a hybrid test site for the final disposal of spent nuclear fuel is newly demonstrated. Proposed solution to simulate the transport of nuclides in the one-dimensional pathway of host rock becomes feasible, so that the simulation and prediction of radionuclide transport of fractured media existing in geosphere can be conservatively performed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnold, B. W., Altman, S. J., Robey, T. H., Barnard, R. W., & Brown, T. J. (1995). Unsaturated-zone fast-path flow calculations for Yucca Mountain groundwater travel time analyses (GWTT-94). SAND95-0857 (p. 169). Albuquerque: Sandia National Laboratories.

    Google Scholar 

  • Barker, J. A. (1982). Laplace transform solutions for solute transport in fissured aquifers. Advances in Water Resources, 5(2), 98–104.

    Article  Google Scholar 

  • Bear, J. (1972). Dynamics of fluids in porous media. New York: Elsevier.

    Google Scholar 

  • Crump, K. S. (1976). Numerical inversions of Laplace transforms using a Fourier series approximation. Journal of the Association for Computing Machinery, 23, 89–96.

    Google Scholar 

  • de Hoog, F. R., Knight, J. H., & Stokes, A. N. (1982). An improved method for numerical inversion of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357–366.

    Article  Google Scholar 

  • Dudley, A. L., Peters, R. R., Gauthier, J. H., Wilson, M. L., Tierney, M. S., & Klavetter, E. A. (1988). Total System Performance Assessment Code (TOSPAC) Vol. 1 physical and mathematical bases. SAND85-0002 (p. 212). Albuquerque: Sandia National Laboratories.

    Google Scholar 

  • Endo, H. K., Long, J. C. S., Wilson, C. R., & Witherspoon, P. A. (1984). A model for investigating mechanical transport in fracture networks. Water Resources Research, 20(10), 1390–1400.

    Article  Google Scholar 

  • Fetter, C. W. (1999). Contaminant hydrology (pp. 107–117). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Firestone, R. B. (1996). Table of isotopes (Vol. I and II). New York: Wiley.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater (p. 604). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Garbow, B. S., Guinta, G., & Lyness, J. N. (1988). Algorithm 662, a FORTRAN software package for the numerical inversion of the Laplace transform based on weeks’ method. ACM Transactions on Mathematical Software, 14(2), 171–176.

    Article  Google Scholar 

  • Grisak, G. E., & Pickens, J. F. (1980). Solute transport through fractured media, 1. The effect of matrix diffusion. Water Resources Research, 16(4), 719–730.

    Article  Google Scholar 

  • Grisak, G. E., & Pickens, J. F. (1981). An analytical solution for solute transport through fractured media with matrix diffusion. Journal of Hydrology, 52, 47–57.

    Article  Google Scholar 

  • IMSL. (2000). Compaq visual fortran professional edition, Version 6.6.a. Fremont: Compaq Computer Corporation.

    Google Scholar 

  • JNC (1999). H12 project to establish technical basis for HLW disposal in Japan, supporting report 3, safety assessment. Japan Nuclear Cycle Development Institute, JNC TN1400 99-013.

  • JNC (2000). H12 project to establish technical basis for HLW disposal in Japan, project overview report. Japan Nuclear Cycle Development Institute, JNC TN1400 2000-001.

  • Kreyszig, E. (1993). Advanced engineering mathematics (pp. 261–324). New York: Wiley.

    Google Scholar 

  • Lester, D. H., Jansen, G., & Burkholder, H. C. (1975). Migration of radionuclide chains through an adsorbing medium. AIChE Symposium Series, 71, 202–213.

    CAS  Google Scholar 

  • Lindgren, M., & Skagius, K. (1989). SKB WP-Cave project: Radionuclide release from the near-field in a WP-Cave repository. SKB TR89-04. Stockholm: Swedish Nuclear Fuel and Waste Management Co.

    Google Scholar 

  • Mereno, L., Arve, S., & Neretnieks, I. (1989). SKB WP-Cave project: Transport of escaping radionuclides from the WP-Cave repository to the biosphere. SKB TR89-05. Stockholm: Swedish Nuclear Fuel and Waste Management Co.

    Google Scholar 

  • Neretnieks, I. (1980). Diffusion in the rock matrix: an important factor in radionuclide migration. Journal of Geophysical Research, 85(B8), 4379–4397.

    Article  CAS  Google Scholar 

  • Norman, S., & Kjellbert, N. (1990). FARF31-A far field radionuclide migration code for use with the PROPER package. SKB TR90-01. Stockholm: Swedish Nuclear Fuel and Waste Management Co.

    Google Scholar 

  • Norman, S., & Kjellbert, N. (1991). NEAR21-A near field radionuclide migration code for use with the PROPER package. SKB TR91-19. Stockholm: Swedish Nuclear Fuel and Waste Management Co.

    Google Scholar 

  • PNC. (1992). Research and development on geological disposal of high-level radioactive waste, first progress report. PNC TN1410 93-059. Tokyo: Power Reactor and Nuclear Fuel Development Corporation.

    Google Scholar 

  • Rasmuson, L., & Neretneiks, I. (1981). Migration of radionuclides in fissured rock: the influence of micropore diffusion and longitudinal dispersion. Journal of Geophysical Research, 86(B5), 3749–3758.

    Article  CAS  Google Scholar 

  • Robey, T. H. (1994). Development of models for fast fluid pathways through unsaturated heterogeneous porous media. SAND93-7 109. Albuquerque: Sandia National Laboratories.

    Book  Google Scholar 

  • Shih, D. C.-F., Lin, G. F., & Wang, I. S. (2002). Contaminant transport in a single fractured media: analytical solution and sensitivity for considering pulse, Dirac delta and single sinusoid input sources. Hydrological Processes, 16, 3265–3278.

    Article  Google Scholar 

  • Shih, D. C. F. (2004). Uncertainty analysis: one-dimensional radioactive nuclide transport in a single fractured media. Stochastic Environmental Research and Risk Assessment, 18, 198–204.

    Article  Google Scholar 

  • Smith, L., & Schwartz, F. W. (1984). An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resources Research, 20(9), 1241–1252.

    Article  Google Scholar 

  • Spiegel, M. R. (1968). Mathematical handbook of formulas and tables, Schaum’s outline series (pp. 161–173). New-York: McGraw-Hill.

    Google Scholar 

  • Sudicky, E. K., & Frind, E. O. (1982). Contaminant transport in fractured porous media: Analytical solution for a system of parallel fractures. Water Resources Research, 18(6), 1634–1642.

    Article  Google Scholar 

  • Sudicky, E. K., & Frind, E. O. (1984). Contaminant transport in fractured porous media: Analytical solution for a two-member decay chain in a single fracture. Water Resources Research, 20(7), 1021–1029.

    Article  Google Scholar 

  • Tang, D. H., Frind, E. O., & Sudicky, E. A. (1981). Contaminant transport in fractured porous media: Analytical solution for a single fracture. Water Resources Research, 17(3), 555–564.

    Article  Google Scholar 

  • Weeks, W. T. (1966). Numerical inversion of Laplace transforms using Laguerre functions. Journal of the Association for Computing Machinery, 13(3), 419–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ching-Fang Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, D.CF. Radionuclide Transport in Granitic Rock Considering Multiple-Member Decay Chain: Application of Spent Nuclear Fuel Final Disposal. Water Air Soil Pollut 215, 205–219 (2011). https://doi.org/10.1007/s11270-010-0470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-010-0470-5

Keywords

Navigation