Skip to main content
Log in

Radioxenon Production and Transport from an Underground Nuclear Detonation to Ground Surface

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Radioxenon isotopes are considered as possible indicators for detecting and discriminating underground nuclear explosions. To monitor and sample the release of radioxenon isotopes, both independent and chain-reaction yields need to be considered together with multiphase transport in geological systems from the detonation point to the ground surface. For the sake of simplicity, modeling of radioxenon isotopic radioactivities has typically been focused either on chain reactions in a batch reactor without considering multiphase transport or on radionuclide transport with simplified reactions. Although numerical methods are available for integrating coupled differential equations of complex decay networks, the stiffness of ordinary differential equations due to greatly differing decay rates may require substantial additional effort to obtain solutions for the fully coupled system. For this reason, closed-form solutions for sequential reactions and numerical solutions for multiparent converging and multidaughter branching reactions were previously developed and used to simulate xenon isotopic radioactivities in the batch reactor mode. In this paper, we develop a fully coupled numerical model, which involves tracking 24 components (i.e., 22 radionuclide components plus air and water) in two phases to enhance model predictability of simultaneously simulating xenon isotopic transport and fully coupled chain reactions. To validate the numerical model and verify the corresponding computer code, we derived closed-form solutions for first-order xenon reactions in a batch reactor mode and for single-gas phase transport coupled with the xenon reactions in a one-dimensional column. Finally, cylindrical 3-D simulations of two-phase flow within a dual permeability fracture-matrix medium, simulating the geohydrologic regime of an underground nuclear explosion, indicate the existence of both a strong temporal and spatial dependence of xenon isotopic ratios sampled at the surface. In the example presented here, temporally evolving subsurface xenon isotopic ratios are found to migrate across the discrimination line delineating civilian nuclear activities from an underground nuclear explosion in the KALINOWSKI Multi-Isotope Ratio Chart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bateman, H., 1910, Solution of a system of differential equations occurring in the theory of radioactive transformations, Proc. Cambridge Philos. Sco., 15, 423–427.

  • Bear, J., 1979, Groundwater Hydraulics, McGraw-Hill, New York, pp. 569.

  • Bowyer, T.W., Schlosser, C., Abel, K.H., Auer, M., Hayers, J.C., Heimbigner, T.R., Mcintyre, J.I., Panisko, M.C., Reeder, P.L., Satorius, H., Schulze, J., Weiss, W., 2002, Detection and analysis of xenon isotopes for the comprehensive nuclear-test-ban treaty international monitoring system, J. Environ. Radioac., 59(2), 139–151.

  • Carrigan, C.R., Heinle, R.A., Hudson, G.B., Nitao, J.J., Zucca, J.J., 1996, Trace gas emissions on geological faults as indicators of underground nuclear testing, Nature, 382(6591), 528–531, doi:10.1038/382528a0.

  • Carrigan, C.R., Sun, Y., 2014, Detection of noble gas radionuclides from an underground nuclear explosion during a CTBT on-site inspection, Pure Appl. Geophys., 171(3–5), pp. 717–734, doi:10.1007/s00024-012-0563-8.

  • Cetnar, J., 2006, General solution of Bateman equations for nuclear transmutations, Ann. Nucl. Energy, 33, 640–645.

  • Clement, T.P., Sun, Y., Hooker, B.S., Petersen, J.N., 1998. Modeling multi-species reactive transport in groundwater aquifers. Ground Water Monit. Remediat., 18(2), 79–92.

  • England, T.R., Rider, B.F., 1994, ENDF-349 Evaluation and compilation of fission product yields 1993, Los Alamos National Laboratory, LA-UR-94-3106.

  • Ensdf, 2009, Evaluated Nuclear Structure Data File (ENSDF), National Nuclear Data Center at Brookhaven National Laboratory.

  • Hao, Y., Sun, Y., Nitao, J.J., 2012, Overview of NUFT - a versatile numerical model for simulating flow and reactive transport in porous media, Edited by Zhang et al. in Ground water reactive transport model, Bentham Science Publishers.

  • Kalinowski, M.B., Axelsson, A., Bean, M., Blanchard, X., Bowyer, T.W., Brachet, G., Hebel, S., Mcintyre, J.I., Peters, J., Pistner, C., Raith, M., Ringbom, A., Saey, P., Schlosser, C., Stocki, T.J., Taffary, T., Ungar, R.K., 2010, Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios, Pure Appl. Geophys., 167(4–5), 517–539.

  • Kalinowski, M.B., 2011, Characterisation of prompt and delayed atmospheric radioactivity releases from underground nuclear tests at Nevada as a function of release time, J. Environ. Radio., 102(9), 824–836.

  • Kalinowski, M.B., Pistner, C., 2006, Isotopic signature of atmospheric xenon released from light water reactors, J. Environ. Radio., 88(3), 215–235.

  • Lowrey, J.D., Biegalski, S.R., Deinert, M.R., 2013a, UTEX modeling of radioxenon isotopic fractionation resulting from a subsurface transport, J. Radioanal. Nucl. Chem., 296(1), 129–134, doi:10.10007/s10967-012-2026-1.

  • Lowrey, J.D., Biegalski, S.R., Osborne, A.G., Deinert, M.R., 2013b, Subsurface mass transport affects the radioxenon signatures that are used to identify clandestine nuclear tests, Geophys. Res. Lett., 40(1), 111–115, doi:10.1029/2012GL053885.

  • Lu, X., Sun, Y., Petersen, J.N., 2003, Analytical solutions of TCE transport with convergent reactions, Transport Porous Med., 51(3), 211–225.

  • Mathworks, 2000, MATLAB high-performance numeric computation and visualization software, Web site: www.mathwroks.com, Natick, MA, USA.

  • Moler, C., Van loan, C., 1978, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Review, 20(3), 801–836.

  • Moral, L., Pacheco, A.F., 2003, Algebraic approach to the radioactive decay equation, Am. J. Phys., 71(7), 684–686.

  • Nitao, J.J., 1998. User’s manual for the USNT module of the NUFT code, version 2 (NP-phase, NC-component, thermal), Lawrence Livermore National Laboratory, UCRL-MA-130653.

  • Pigford, T.H., Chambre, P.L., Albert, M., Foglia, M., Harada, M., Iwamoto, F., Kanki, T., Leung, D., Masuda, S., Muraoka, S., Ting, D., 1980, Migration of radionuclides through sorbing media: analytical solutions II, ONWI 360(1), LBL-11616, UCB-NE-4003.

  • Pressyanov, D.S., 2002, Short solution of the radioactive decay chain equations, Am. J. Phys., 70(4), 444–445.

  • Radhakrishnan, K., Hindmarsh, A.C., 1993, Description and use of LSODE, the Livermore solver for ordinary differential equations, Lawrence Livermore National Laboratory, report UCRL-ID-113855.

  • Saey, P.R.J., Bowyer, T.W., Ringbom, A., 2010, Isotopic noble gas signatures released from medical isotope production facilities Simulations and measurements, Appl. Radiat. Isotopes, 68(9), 1846–1854.

  • Slodička, M., Balážová, A., 2008, Singular value decomposition method for multi-species first-order reactive transport with identical decay rates, Transport Porous Med., 73(2), 161–172.

  • Srinivasan, V., Clement, T.P., 2008, Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part I: Mathematical derivations, Adv. Water Resour., 31(2), 203–218.

  • Sun, Y., Petersen, J.N., Clement, T.P., Hooker, B.S., 1998, Effect of reaction kinetics on predicted concentration profiles during subsurface bioremediation, J. Contam. Hydrol., 31(3–4), 359–372.

  • Sun, Y., Clement, T.P., 1999, A decomposition method for solving coupled multi-species reactive transport problem, Transport Porous Med., 37(3), 327–346.

  • Sun, Y., Petersen, J.N., Clement, T.P., 1999a, Analytical solutions for multiple species reactive transport in multiple dimensions, J. Contam. Hydrol., 35(4), 429–440.

  • Sun, Y., Petersen, J.N., Clement, T.P., Skeen, R.S., 1999b, Development of analytical solutions for multi-species transport with serial and parallel reactions, Water Resour. Res., 35(1), 185–190.

  • Sun, Y., Buscheck, T.A., 2003, Analytical solutions for reactive transport of N-member radionuclide chains in a single fracture J. Contam. Hydrol., 62–63, 695–712.

  • Sun, Y., Lu, X., Petersen, J.N., Buscheck, T.A., 2004, An analytical solution of tetrachloroethylene transport and biodegradation, Transport Porous Med., 55(3), 301–308.

  • Sun, Y., Buscheck, T.A., Hao, Y., 2008, Modeling reactive transport using exact solutions for first-order reaction networks, Transport Porous Med., 71(2), 217–231.

  • Sun, Y., Buscheck, T.A., Lee, K.H., Hao, Y., James, S.C., 2010, Modeling thermal-hydrologic processes for a heated fractured rock system: impact of a capillary-pressure maximum, Transport Porous Med., 83(3), 501–523.

  • Sun, Y., Buscheck, T.A., Hao, Y., 2012, An analytical method for modeling first-order decay networks, Comput. Geosci., 39, 86–97, doi:10.1016/j.cageo.2011.06.015.

  • Sun, Y., Carrigan, C.R., 2014, Modeling noble gas transport and detection for the Comprehensive Nuclear-Test-Ban Treaty, Pure Appl. Geophys., 171(3–5), 735–750, doi:10.1007/s00024-012-0514-4.

  • Thomas, G.F., Barber, D.H., 1994, Stiffness of radioactive decay chains, Ann. Nucl. Energy, 21(5), 309–320.

  • Van genuchten, M.TH., 1985, Convective-dispersive transport of solutes involved in sequential first-order decay reactions, Comput. Geosci., 11(2), 129–147.

  • Xu, T., Sonnenthal, E., Spycher, N., Pruess, K., 2006, TOUGHREACT \(\sim \) A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO 2 geological sequestration, Comput. Geosci., 32(2), 145–165.

  • Yuan, D., Kernan, W., 2007, Explicit solution for exit-only radioactive decay chains, J. Appl. Phys., 101(9), 094907.

Download references

Acknowledgments

The authors wish to thank Martin B. Kalinowski at Carl Friedrich von Weizsäcker Center for Science and Peace Research (ZNF) and Carol A. Velsko at Lawrence Livermore National Laboratory for providing and interpreting data of fission product decay chains. The authors also thank Nathan G. Wimer and Steven A. Kreek at Lawrence Livermore National Laboratory, two anonymous reviewers, for their careful review and helpful comments that led to an improved manuscript. This research was funded by the Office of Proliferation Detection (NA-221), U.S. Department of Energy and performed under award number DE-AC52-06NA25946 and the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors also wish to express their gratitude to the National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) and the Comprehensive Inspection Technologies working group, a multi-institutional and interdisciplinary group of scientists and engineers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunwei Sun.

Additional information

IM release number: LLNL-JRNL-648035.

Appendices

Appendix A: Transformation Matrices of 131 and 133 Decay Networks

Transformation matrices \({\mathbf {S}}^-\) and \({\mathbf {S}}\) of 131 and 133 decay networks are formulated as:

$$\begin{aligned} {\mathbf {S}}^-=\left[ \begin{array}{cccccccc} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \frac{\alpha _1k_1}{k_1-k_2} &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ S^-_{3,1} &{} \frac{\alpha _2k_2}{k_2-k_3} &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{}0 \\ S^-_{4,1} &{} S^-_{4,2} &{} \frac{\alpha _3k_3}{k_3-k_4} &{} 1 &{} 0 &{} 0 &{} 0&{} 0\\ S^-_{5,1} &{} S^-_{5,2} &{} S^-_{5,3} &{} \frac{\alpha _6k_4}{k_4-k_5} &{} 1 &{} 0 &{} 0 &{}0 \\ S^-_{6,1} &{} S^-_{6,2} &{} S^-_{6,3} &{} S^-_{6,4} &{} \frac{k_5}{k_5-k_6} &{}1&{}0 &{}0\\ S^-_{7,1} &{} S^-_{7,2} &{} S^-_{7,3} &{} S^-_{7,4} &{} S^-_{7,5} &{} \frac{\alpha _7k_6}{k_6-k_7} &{} 1 &{} 0\\ S^-_{8,1} &{} S^-_{8,2} &{} S^-_{8,3} &{} S^-_{8,4} &{} S^-_{8,5} &{} S^-_{8,6} &{} \frac{k_7}{k_7-k_8} &{} 1\\ \end{array} \right] \end{aligned},$$
(10)

where

$$\begin{aligned} S^-_{3,1}&= \frac{\alpha _1k_1}{k_1-k_3}\cdot \frac{\alpha _2k_2}{k_2-k_3} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3)\\ S^-_{4,1}&= \frac{\alpha _1k_1}{k_1-k_4}\cdot \frac{\alpha _2k_2}{k_2-k_4}\cdot \frac{\alpha _3k_3}{k_3-k_4} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4)\\ S^-_{5,1}&= \frac{\alpha _1k_1}{k_1-k_5}\cdot \frac{\alpha _2k_2}{k_2-k_5}\cdot \frac{\alpha _3k_3}{k_3-k_5}\cdot \frac{\alpha _6k_4}{k_4-k_5} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5)\\&+ \frac{\alpha _1k_1}{k_1-k_5}\cdot \frac{\alpha _2k_2}{k_2-k_5}\cdot \frac{\alpha _4k_3}{k_3-k_5} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5)\\ S^-_{6,1}&= \frac{\alpha _1k_1}{k_1-k_6}\cdot \frac{\alpha _2k_2}{k_2-k_6}\cdot \frac{\alpha _3k_3}{k_3-k_6}\cdot \frac{\alpha _5k_4}{k_4-k_6} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _1k_1}{k_1-k_6}\cdot \frac{\alpha _2k_2}{k_2-k_6}\cdot \frac{\alpha _3k_3}{k_3-k_6}\cdot \frac{\alpha _6k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6)\\&+ \frac{\alpha _1k_1}{k_1-k_6}\cdot \frac{\alpha _2k_2}{k_2-k_6}\cdot \frac{\alpha _4k_3}{k_3-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6)\\ S^-_{7,1}&= \frac{\alpha _1k_1}{k_1-k_7}\cdot \frac{\alpha _2k_2}{k_2-k_7}\cdot \frac{\alpha _3k_3}{k_3-k_7}\cdot \frac{\alpha _5k_4}{k_4-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}7)\\&+ \frac{\alpha _1k_1}{k_1-k_7}\cdot \frac{\alpha _2k_2}{k_2-k_7}\cdot \frac{\alpha _3k_3}{k_3-k_7}\cdot \frac{\alpha _6k_4}{k_4-k_7}\cdot \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _1k_1}{k_1-k_7}\cdot \frac{\alpha _2k_2}{k_2-k_7}\cdot \frac{\alpha _4k_3}{k_3-k_7}\cdot \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S^-_{8,1}&= \frac{\alpha _1k_1}{k_1-k_8}\cdot \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _1k_1}{k_1-k_8}\cdot \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _1k_1}{k_1-k_8}\cdot \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _1k_1}{k_1-k_8}\cdot \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _1k_1}{k_1-k_8}\cdot \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _4k_3}{k_3-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _1k_1}{k_1-k_8}\cdot \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _4k_3}{k_3-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S^-_{4,2}&= \frac{\alpha _2k_2}{k_2-k_4}\cdot \frac{\alpha _3k_3}{k_3-k_4} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4)\\ S^-_{5,2}&= \frac{\alpha _2k_2}{k_2-k_5}\cdot \frac{\alpha _3k_3}{k_3-k_5}\cdot \frac{\alpha _6k_4}{k_4-k_5} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5)\\&+ \frac{\alpha _2k_2}{k_2-k_5}\cdot \frac{\alpha _4k_3}{k_3-k_5} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5)\\ S^-_{6,2}&= \frac{\alpha _2k_2}{k_2-k_6}\cdot \frac{\alpha _3k_3}{k_3-k_6}\cdot \frac{\alpha _5k_4}{k_4-k_6} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _2k_2}{k_2-k_6}\cdot \frac{\alpha _3k_3}{k_3-k_6}\cdot \frac{\alpha _6k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\rightarrow 6)\\&+ \frac{\alpha _2k_2}{k_2-k_6}\cdot \frac{\alpha _4k_3}{k_3-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5\rightarrow 6)\\ S^-_{7,2}&= \frac{\alpha _2k_2}{k_2-k_7}\cdot \frac{\alpha _3k_3}{k_3-k_7}\cdot \frac{\alpha _5k_4}{k_4-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _2k_2}{k_2-k_7}\cdot \frac{\alpha _3k_3}{k_3-k_7}\cdot \frac{\alpha _6k_4}{k_4-k_7}\cdot \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _2k_2}{k_2-k_7}\cdot \frac{\alpha _4k_3}{k_3-k_7}\cdot \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S^-_{8,2}&= \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _4k_3}{k_3-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _2k_2}{k_2-k_8}\cdot \frac{\alpha _4k_3}{k_3-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S^-_{5,3}&= \frac{\alpha _3k_3}{k_3-k_5}\cdot \frac{\alpha _6k_4}{k_4-k_5} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5)\\&+ \frac{\alpha _4k_3}{k_3-k_5} \quad (3\,\overrightarrow{\alpha _4}\,5)\\ S^-_{6,3}&= \frac{\alpha _3k_3}{k_3-k_6}\cdot \frac{\alpha _5k_4}{k_4-k_6} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _3k_3}{k_3-k_6}\cdot \frac{\alpha _6k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\rightarrow 6)\\&+ \frac{\alpha _4k_3}{k_3-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (3\,\overrightarrow{\alpha _4}\,5\rightarrow 6)\\ S^-_{7,3}&= \frac{\alpha _3k_3}{k_3-k_7}\cdot \frac{\alpha _5k_4}{k_4-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _3k_3}{k_3-k_7}\cdot \frac{\alpha _6k_4}{k_4-k_7}\cdot \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\,\rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _4k_3}{k_3-k_7}\cdot \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S^-_{8,3}&= \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _3k_3}{k_3-k_8}\cdot \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _4k_3}{k_3-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _4k_3}{k_3-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S^-_{6,4}&= \frac{\alpha _5k_4}{k_4-k_6} \quad (4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _6k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (4\,\overrightarrow{\alpha _6}\,5\rightarrow 6)\\ S^-_{7,4}&= \frac{\alpha _5k_4}{k_4-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _6k_4}{k_4-k_7}\cdot \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (4\,\overrightarrow{\alpha _6}\,5\rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S^-_{8,4}&= \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _5k_4}{k_4-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (4\,\overrightarrow{\alpha _6}\,5\,\rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _6k_4}{k_4-k_8}\cdot \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (4\,\overrightarrow{\alpha _6}\,5\,\rightarrow 6\,\overrightarrow{\alpha _8}\,8) \\ S^-_{7,5}&= \frac{k_5}{k_5-k_7}\cdot \frac{\alpha _7k_6}{k_6-k_7} \quad (5\rightarrow 6\,\overrightarrow{\alpha _7}\,7) \\ S^-_{8,5}&= \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (5\rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8) \\&+ \frac{k_5}{k_5-k_8}\cdot \frac{\alpha _8k_6}{k_6-k_8} \quad (5\rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S^-_{8,6}&= \frac{\alpha _7k_6}{k_6-k_8}\cdot \frac{k_7}{k_7-k_8} \quad (6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _8k_6}{k_6-k_8} \quad (6\,\overrightarrow{\alpha _8}\,8), \end{aligned}$$

and

$$\begin{aligned} {\mathbf {S}}=\left[ \begin{array}{cccccccc} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{}0\\ \frac{\alpha _1k_1}{k_2-k_1} &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{}0\\ S_{3,1} &{} \frac{\alpha _2k_2}{k_3-k_2} &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{}0\\ S_{4,1} &{} S_{4,2} &{} \frac{\alpha _3k_3}{k_4-k_3} &{} 1 &{} 0 &{} 0 &{} 0 &{}0\\ S_{5,1} &{} S_{5,2} &{} S_{5,3} &{} \frac{\alpha _6k_4}{k_5-k_4} &{} 1 &{} 0 &{} 0 &{}0\\ S_{6,1} &{} S_{6,2} &{} S_{6,3} &{} S_{6,4} &{} \frac{k_5}{k_6-k_5} &{} 1 &{} 0 &{}0\\ S_{7,1} &{} S_{7,2} &{} S_{7,3} &{} S_{7,4} &{} S_{7,5} &{} \frac{\alpha _7k_6}{k_7-k_6} &{} 1 &{}0\\ S_{8,1} &{} S_{8,2} &{} S_{8,3} &{} S_{8,4} &{} S_{8,5} &{} S_{8,6} &{} \frac{k_7}{k_8-k_7} &{}1\\ \end{array} \right] \end{aligned},$$
(11)

where

$$\begin{aligned} S_{3,1}&= \frac{\alpha _1k_1}{k_3-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3)\\ S_{4,1}&= \frac{\alpha _1k_1}{k_4-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4)\\ S_{5,1}&= \frac{\alpha _1k_1}{k_5-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _6k_4}{k_4-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5)\\&\quad + \frac{\alpha _1k_1}{k_5-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _4k_3}{k_3-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,4)\\ S_{6,1}&= \frac{\alpha _1k_1}{k_6-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _6k_4}{k_4-k_1}\cdot \frac{k_5}{k_5-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\rightarrow 6)\\&+ \frac{\alpha _1k_1}{k_6-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _5k_4}{k_4-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _1k_1}{k_6-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _4k_3}{k_3-k_1}\cdot \frac{k_5}{k_5-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5\rightarrow 6)\\ S_{7,1}&= \frac{\alpha _1k_1}{k_7-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _5k_4}{k_4-k_1}\cdot \frac{\alpha _7k_6}{k_6-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _1k_1}{k_7-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _6k_4}{k_4-k_1}\cdot \frac{k_5}{k_5-k_1}\cdot \frac{\alpha _7k_6}{k_6-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _1k_1}{k_7-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _4k_3}{k_3-k_1}\cdot \frac{k_5}{k_5-k_1}\cdot \frac{\alpha _7k_6}{k_6-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S_{8,1}&= \frac{\alpha _1k_1}{k_8-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _5k_4}{k_4-k_1}\cdot \frac{\alpha _7k_6}{k_6-k_1}\cdot \frac{k_7}{k_7-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _1k_1}{k_8-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _5k_4}{k_4-k_1}\cdot \frac{\alpha _8k_6}{k_6-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _1k_1}{k_8-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _6k_4}{k_4-k_1}\cdot \frac{k_5}{k_5-k_1}\cdot \frac{\alpha _7k_6}{k_6-k_1}\cdot \frac{k_7}{k_7-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\,\rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _1k_1}{k_8-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _3k_3}{k_3-k_1}\cdot \frac{\alpha _6k_4}{k_4-k_1}\cdot \frac{k_5}{k_5-k_1}\cdot \frac{\alpha _8k_6}{k_6-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _3}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _1k_1}{k_8-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _4k_3}{k_3-k_1}\cdot \frac{k_5}{k_5-k_1}\cdot \frac{\alpha _7k_6}{k_6-k_1}\cdot \frac{k_7}{k_7-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _1k_1}{k_8-k_1}\cdot \frac{\alpha _2k_2}{k_2-k_1}\cdot \frac{\alpha _4k_3}{k_3-k_1}\cdot \frac{k_5}{k_5-k_1}\cdot \frac{\alpha _8k_6}{k_6-k_1} \quad (1\,\overrightarrow{\alpha _1}\,2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S_{4,2}&= \frac{\alpha _2k_2}{k_4-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4)\\ S_{5,2}&= \frac{\alpha _2k_2}{k_5-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _6k_4}{k_4-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5)\\&+ \frac{\alpha _2k_2}{k_5-k_2}\cdot \frac{\alpha _4k_3}{k_3-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5)\\ S_{6,2}&= \frac{\alpha _2k_2}{k_6-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _5k_4}{k_4-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _2k_2}{k_6-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _6k_4}{k_4-k_2}\cdot \frac{k_5}{k_5-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\rightarrow 6)\\&+ \frac{\alpha _2k_2}{k_6-k_2}\cdot \frac{\alpha _4k_3}{k_3-k_2}\cdot \frac{k_5}{k_5-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5\rightarrow 6)\\ S_{7,2}&= \frac{\alpha _2k_2}{k_7-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _5k_4}{k_4-k_2}\cdot \frac{\alpha _7k_6}{k_6-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _2k_2}{k_7-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _6k_4}{k_4-k_2}\cdot \frac{k_5}{k_5-k_2}\cdot \frac{\alpha _7k_6}{k_6-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _2k_2}{k_7-k_2}\cdot \frac{\alpha _4k_3}{k_3-k_2}\cdot \frac{k_5}{k_5-k_2}\cdot \frac{\alpha _7k_6}{k_6-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S_{8,2}&= \frac{\alpha _2k_2}{k_8-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _5k_4}{k_4-k_2}\cdot \frac{\alpha _7k_6}{k_6-k_2}\cdot \frac{k_7}{k_7-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _2k_2}{k_8-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _5k_4}{k_4-k_2}\cdot \frac{\alpha _8k_6}{k_6-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _2k_2}{k_8-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _6k_4}{k_4-k_2}\cdot \frac{k_5}{k_5-k_2}\cdot \frac{\alpha _7k_6}{k_6-k_2}\cdot \frac{k_7}{k_7-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _2k_2}{k_8-k_2}\cdot \frac{\alpha _3k_3}{k_3-k_2}\cdot \frac{\alpha _6k_4}{k_4-k_2}\cdot \frac{k_5}{k_5-k_2}\cdot \frac{\alpha _8k_6}{k_6-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,7)\\&+ \frac{\alpha _2k_2}{k_8-k_2}\cdot \frac{\alpha _4k_3}{k_3-k_2}\cdot \frac{k_5}{k_5-k_2}\cdot \frac{\alpha _7k_6}{k_6-k_2}\cdot \frac{k_7}{k_7-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _2k_2}{k_8-k_2}\cdot \frac{\alpha _4k_3}{k_3-k_2}\cdot \frac{k_5}{k_5-k_2}\cdot \frac{\alpha _8k_6}{k_6-k_2} \quad (2\,\overrightarrow{\alpha _2}\,3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S_{5,3}&= \frac{\alpha _3k_3}{k_5-k_3}\cdot \frac{\alpha _6k_4}{k_4-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5)\\&+ \frac{\alpha _4k_3}{k_5-k_3} \quad (3\,\overrightarrow{\alpha _4}\,5)\\ S_{6,3}&= \frac{\alpha _3k_3}{k_6-k_3}\cdot \frac{\alpha _5k_4}{k_4-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _3k_3}{k_6-k_3}\cdot \frac{\alpha _6k_4}{k_4-k_3}\cdot \frac{k_5}{k_5-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\rightarrow 6)\\&+ \frac{\alpha _4k_3}{k_6-k_3}\cdot \frac{k_5}{k_5-k_3} \quad (3\,\overrightarrow{\alpha _4}\,5\rightarrow 6)\\ S_{7,3}&= \frac{\alpha _3k_3}{k_7-k_3}\cdot \frac{\alpha _5k_4}{k_4-k_3}\cdot \frac{\alpha _7k_6}{k_6-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _3k_3}{k_7-k_3}\cdot \frac{\alpha _6k_4}{k_4-k_3}\cdot \frac{k_5}{k_5-k_3}\cdot \frac{\alpha _7k_6}{k_6-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5\,\rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _4k_3}{k_7-k_3}\cdot \frac{k_5}{k_5-k_3}\cdot \frac{\alpha _7k_6}{k_6-k_3} \quad (3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S_{8,3}&= \frac{\alpha _3k_3}{k_8-k_3}\cdot \frac{\alpha _5k_4}{k_4-k_3}\cdot \frac{\alpha _7k_6}{k_6-k_3}\cdot \frac{k_7}{k_7-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _3k_3}{k_8-k_3}\cdot \frac{\alpha _5k_4}{k_4-k_3}\cdot \frac{\alpha _8k_6}{k_6-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _3k_3}{k_8-k_3}\cdot \frac{\alpha _6k_4}{k_4-k_3}\cdot \frac{k_5}{k_5-k_3}\cdot \frac{\alpha _7k_6}{k_6-k_3}\cdot \frac{k_7}{k_7-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _3k_3}{k_8-k_3}\cdot \frac{\alpha _6k_4}{k_4-k_3}\cdot \frac{k_5}{k_5-k_3}\cdot \frac{\alpha _8k_6}{k_6-k_3} \quad (3\,\overrightarrow{\alpha _3}\,4\,\overrightarrow{\alpha _6}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _4k_3}{k_8-k_3}\cdot \frac{k_5}{k_5-k_3}\cdot \frac{\alpha _7k_6}{k_6-k_3}\cdot \frac{k_7}{k_7-k_3} \quad (3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _4k_3}{k_8-k_3}\cdot \frac{k_5}{k_5-k_3}\cdot \frac{\alpha _8k_6}{k_6-k_3} \quad (3\,\overrightarrow{\alpha _4}\,5 \rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S_{6,4}&= \frac{\alpha _5k_4}{k_6-k_4} \quad (4\,\overrightarrow{\alpha _5}\,6)\\&+ \frac{\alpha _6k_4}{k_6-k_4}\cdot \frac{k_5}{k_5-k_4} \quad (4\,\overrightarrow{\alpha _6}\,5\rightarrow 6)\\ S_{7,4}&= \frac{\alpha _5k_4}{k_7-k_4}\cdot \frac{\alpha _7k_6}{k_6-k_4} \quad (4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7)\\&+ \frac{\alpha _6k_4}{k_7-k_4}\cdot \frac{k_5}{k_5-k_4}\cdot \frac{\alpha _7k_6}{k_6-k_4} \quad (4\,\overrightarrow{\alpha _6}\,5\rightarrow 6\,\overrightarrow{\alpha _7}\,7)\\ S_{8,4}&= \frac{\alpha _5k_4}{k_8-k_4}\cdot \frac{\alpha _7k_6}{k_6-k_4}\cdot \frac{k_7}{k_7-k_4} \quad (4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _5k_4}{k_8-k_4}\cdot \frac{\alpha _8k_6}{k_6-k_4} \quad (4\,\overrightarrow{\alpha _5}\,6\,\overrightarrow{\alpha _8}\,8)\\&+ \frac{\alpha _6k_4}{k_8-k_4}\cdot \frac{k_5}{k_5-k_4}\cdot \frac{\alpha _7k_6}{k_6-k_4}\cdot \frac{k_7}{k_7-k_4} \quad (4\,\overrightarrow{\alpha _6}\,5\,\rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _6k_4}{k_8-k_4}\cdot \frac{k_5}{k_5-k_4}\cdot \frac{\alpha _8k_6}{k_6-k_4} \quad (4\,\overrightarrow{\alpha _6}\,5\,\rightarrow 6\,\overrightarrow{\alpha _8}\,8) \\ S_{7,5}&= \frac{k_5}{k_7-k_5}\cdot \frac{\alpha _7k_6}{k_6-k_5} \quad (5\rightarrow 6\,\overrightarrow{\alpha _7}\,7) \\ S_{8,5}&= \frac{k_5}{k_8-k_5}\cdot \frac{\alpha _7k_6}{k_6-k_5}\cdot \frac{k_7}{k_7-k_5} \quad (5\rightarrow 6\,\overrightarrow{\alpha _7}\,7\rightarrow 8) \\&+ \frac{k_5}{k_8-k_5}\cdot \frac{\alpha _8k_6}{k_6-k_5} \quad (5\rightarrow 6\,\overrightarrow{\alpha _8}\,8)\\ S_{8,6}&= \frac{\alpha _7k_6}{k_8-k_6}\cdot \frac{k_7}{k_7-k_6} \quad (6\,\overrightarrow{\alpha _7}\,7\rightarrow 8)\\&+ \frac{\alpha _8k_6}{k_8-k_6} \quad (6\,\overrightarrow{\alpha _8}\,8). \end{aligned}$$

Appendix B: Transformation Matrices of 135 Decay Network

Transformation matrices \({\mathbf {S}}^-\) and \({\mathbf {S}}\) of 135 decay networks are formulated as:

$$\begin{aligned} {\mathbf {S}}^-=\left[ \begin{array}{cccccc} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \frac{k_1}{k_1-k_2} &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ S^-_{3,1} &{} \frac{\alpha _1k_2}{k_2-k_3} &{} 1 &{} 0 &{} 0 &{} 0 \\ S^-_{4,1} &{} S^-_{4,2} &{} \frac{k_3}{k_3-k_4} &{} 1 &{} 0 &{} 0\\ S^-_{5,1} &{} S^-_{5,2} &{} S^-_{5,3} &{} \frac{\alpha _2k_4}{k_4-k_5} &{} 1 &{} 0\\ S^-_{6,1} &{} S^-_{6,2} &{} S^-_{6,3} &{} S^-_{6,4} &{} \frac{k_5}{k_5-k_6} &{} 1\\ \end{array} \right] \end{aligned},$$
(12)

where

$$\begin{aligned} S^-_{3,1}&= \frac{k_1}{k_1-k_3}\cdot \frac{\alpha _1k_2}{k_2-k_3} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,3)\\ S^-_{4,1}&= \frac{k_1}{k_1-k_4}\cdot \frac{\alpha _1k_2}{k_2-k_4}\cdot \frac{k_3}{k_3-k_4} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4)\\ S^-_{5,1}&= \frac{k_1}{k_1-k_5}\cdot \frac{\alpha _1k_2}{k_2-k_5}\cdot \frac{k_3}{k_3-k_5}\cdot \frac{\alpha _2k_4}{k_4-k_5} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _2}\,5)\\ S^-_{6,1}&= \frac{k_1}{k_1-k_6}\cdot \frac{k_2}{k_2-k_6}\cdot \frac{\alpha _1\cdot k_3}{k_3-k_6}\cdot \frac{\alpha _3k_4}{k_4-k_6} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _3}\,6)\\&+ \frac{k1}{k_1-k_6}\cdot \frac{k_2}{k_2-k_6}\cdot \frac{\alpha _1k_3}{k_3-k_6}\cdot \frac{\alpha _2k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _2}\,5\rightarrow 6)\\ S^-_{4,2}&= \frac{\alpha _1k_2}{k_2-k_4}\cdot \frac{k_3}{k_3-k_4} \quad (2\,\overrightarrow{\alpha _1}\,3\rightarrow 4)\\ S^-_{5,2}&= \frac{\alpha _1k_2}{k_2-k_5}\cdot \frac{k_3}{k_k3-k_5}\cdot \frac{\alpha _2k_4}{k_4-k_5} \quad (2\,\overrightarrow{\alpha _1}\,3\,\rightarrow 4\,\overrightarrow{\alpha _2}\,5)\\ S^-_{6,2}&= \frac{k_2}{k_2-k_6}\cdot \frac{\alpha _1\cdot k_3}{k_3-k_6}\cdot \frac{\alpha _3k_4}{k_4-k_6} \quad (2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _3}\,6)\\&+ \cdot \frac{k_2}{k_2-k_6}\cdot \frac{\alpha _1k_3}{k_3-k_6}\cdot \frac{\alpha _2k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (2\,\overrightarrow{\alpha _1}\,3\rightarrow 4\,\overrightarrow{\alpha _2}\,5\rightarrow 6)\\ S^-_{5,3}&= \frac{k_3}{k_3-k_5}\cdot \frac{\alpha _2k_4}{k_4-k_5} \quad (3\rightarrow 4\,\overrightarrow{\alpha _2}\, 5)\\ S^-_{6,3}&= \frac{\alpha _1\cdot k_3}{k_3-k_6}\cdot \frac{\alpha _3k_4}{k_4-k_6} \quad (3\rightarrow 4\,\overrightarrow{\alpha _3}\,6)\\&+ \frac{\alpha _1k_3}{k_3-k_6}\cdot \frac{\alpha _2k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (3\rightarrow 4\,\overrightarrow{\alpha _2}\,5\rightarrow 6)\\ S^-_{6,4}&= \frac{\alpha _3k_4}{k_4-k_6} \quad (4\,\overrightarrow{\alpha _3}\,6)\\&+ \frac{\alpha _2k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (4\,\overrightarrow{\alpha _2}\,5\rightarrow 6)\\ \end{aligned}$$

and

$$\begin{aligned} {\mathbf {S}}=\left[ \begin{array}{cccccc} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \frac{k_1}{k_2-k_1} &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ S_{3,1} &{} \frac{\alpha _1k_2}{k_3-k_2} &{} 1 &{} 0 &{} 0 &{} 0 \\ S_{4,1} &{} S_{4,2} &{} \frac{k_3}{k_4-k_3} &{} 1 &{} 0 &{} 0\\ S_{5,1} &{} S_{5,2} &{} S_{5,3} &{} \frac{\alpha _2k_4}{k_5-k_4} &{} 1 &{} 0\\ S_{6,1} &{} S_{6,2} &{} S_{6,3} &{} S_{6,4} &{} \frac{k_5}{k_6-k_3} &{} 1\\ \end{array} \right] \end{aligned},$$
(13)

where

$$\begin{aligned} S_{3,1}&= \frac{k_1}{k_3-k_1}\cdot \frac{\alpha _1k_2}{k_2-k_1} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,3)\\ S_{4,1}&= \frac{k_1}{k_4-k_1}\cdot \frac{\alpha _1k_2}{k_2-k_1}\cdot \frac{k_3}{k_3-k_1} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4)\\ S_{5,1}&= \frac{k_1}{k_5-k_1}\cdot \frac{\alpha _1k_2}{k_2-k_1}\cdot \frac{k_3}{k_3-k_1}\cdot \frac{\alpha _2k_4}{k_4-k_1} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _2}\,5)\\ S_{6,1}&= \frac{k_1}{k_6-k_1}\cdot \frac{k_2}{k_2-k_1}\cdot \frac{\alpha _1\cdot k_3}{k_3-k_1}\cdot \frac{\alpha _3k_4}{k_4-k_1} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _3}\,6)\\&+ \frac{k1}{k_6-k_1}\cdot \frac{k_2}{k_2-k_1}\cdot \frac{\alpha _1k_3}{k_3-k_1}\cdot \frac{\alpha _2k_4}{k_4-k_1}\cdot \frac{k_5}{k_5-k_1} \quad (1\rightarrow 2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _2}\,5\rightarrow 6)\\ S_{4,2}&= \frac{\alpha _1k_2}{k_4-k_2}\cdot \frac{k_3}{k_3-k_2} \quad (2\,\overrightarrow{\alpha _1}\,3\rightarrow 4)\\ S_{5,2}&= \frac{\alpha _1k_2}{k_5-k_2}\cdot \frac{k_3}{k_k3-k_2}\cdot \frac{\alpha _2k_4}{k_4-k_2} \quad (2\,\overrightarrow{\alpha _1}\,3\,\rightarrow 4\,\overrightarrow{\alpha _2}\,5)\\ S_{6,2}&= \frac{k_2}{k_6-k_2}\cdot \frac{\alpha _1\cdot k_3}{k_3-k_2}\cdot \frac{\alpha _3k_4}{k_4-k_2} \quad (2\,\overrightarrow{\alpha _1}\,2\rightarrow 3\rightarrow 4\,\overrightarrow{\alpha _3}\,6)\\&+ \cdot \frac{k_2}{k_2-k_6}\cdot \frac{\alpha _1k_3}{k_3-k_6}\cdot \frac{\alpha _2k_4}{k_4-k_6}\cdot \frac{k_5}{k_5-k_6} \quad (2\,\overrightarrow{\alpha _1}\,3\rightarrow 4\,\overrightarrow{\alpha _2}\,5\rightarrow 6)\\ S_{5,3}&= \frac{k_3}{k_5-k_3}\cdot \frac{\alpha _2k_4}{k_4-k_3} \quad (3\rightarrow 4\,\overrightarrow{\alpha _2}\, 5)\\ S_{6,3}&= \frac{\alpha _1\cdot k_3}{k_6-k_3}\cdot \frac{\alpha _3k_4}{k_4-k_3} \quad (3\rightarrow 4\,\overrightarrow{\alpha _3}\,6)\\&+ \frac{\alpha _1k_3}{k_6-k_3}\cdot \frac{\alpha _2k_4}{k_4-k_3}\cdot \frac{k_5}{k_5-k_3} \quad (3\rightarrow 4\,\overrightarrow{\alpha _2}\,5\rightarrow 6)\\ S_{6,4}&= \frac{\alpha _3k_4}{k_6-k_4} \quad (4\,\overrightarrow{\alpha _3}\,6)\\&+ \frac{\alpha _2k_4}{k_6-k_4}\cdot \frac{k_5}{k_5-k_4} \quad (4\,\overrightarrow{\alpha _2}\,5\rightarrow 6). \end{aligned}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Carrigan, C.R. & Hao, Y. Radioxenon Production and Transport from an Underground Nuclear Detonation to Ground Surface. Pure Appl. Geophys. 172, 243–265 (2015). https://doi.org/10.1007/s00024-014-0863-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0863-2

Keywords

Navigation